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Formation � ying is a key technology for both deep-space and orbital applications that involve multiple space-
craft. Many future space applications will bene� t from using formation � ying technologies to perform distributed
observations (e.g., synthetic apertures for Earth mapping interferometry) and to provide improved coverage for
communication and surveillance. Previous research has focused on designing passive apertures for these forma-
tion � ying missions assuming a circular reference orbit. Those design approaches are extended and a complete
initialization procedure for a large � eet of vehicles with an eccentric reference orbit is presented. The main result
is derived from the homogenous solutions of the linearized relative equations of motion for the spacecraft. These
solutions are used to � nd the necessary conditions on the initial states that produce T-periodic solutions that have
the vehicles returning to the initial relative states at the end of each orbit, that is, v(t0) = v(t0 + T). This periodicity
condition and the resulting initialization procedure are originally given (in compact form) at the reference orbit
perigee, but this is also generalized to enable initialization at any point around the reference orbit. In particular, an
algorithm is given that minimizes the fuel cost associated with initializing the vehicle states (primarily the in-track
and radial relative velocities) to values that are consistent with periodic relative motion. These algorithms extend
and generalize previously published solutions for passive aperture forming with circular orbits. The periodicity
condition and the homogenous solutions can also be used to estimate relative motion errors and the approximate
fuel cost associated with neglecting the eccentricity in the reference orbit. The nonlinear simulations presented
clearly show that ignoring the reference orbit eccentricity generates an error that is comparable to the disturbances
caused by differential gravity accelerations.

Introduction

T HE concept of autonomous formation � ying of satellite clusters
has been identi� ed as an enabling technology for many future

NASA and U.S. Air Force missions.1¡4 Examples include the Earth
Orbiter-1 mission that is currently on-orbit1 (see also URL: http://
eo1.gsfc.nasa.gov/miscPages/home.html ), StarLight (URL: http://
starlight.jpl.pl.nasa.gov/ ), the Nanosat Constellation Trailblazer
mission (URL: http://nmp.jpl.nasa.gov/st5/), and the Air Force
TechSat-21 (URL: http://www.vs.afrl.af.mil/factsheets/TechSat21.
html) distributed synthetic aperture radar (SAR). The use of � eets
of smaller satellites instead of a single monolithic satellite should
improve the science return through longer baseline observations,
enable faster ground track repeats, and provide a high degree of re-
dundancy and recon� gurability in the event of a single vehicle fail-
ure. If the ground operations can also be replaced with autonomous
onboard control, this � eet approach should also decrease the mis-
sion cost at the same time.1;4 However, implementation of the dis-
tributed coordinating satellite concept will require tight maintenance
and control of the relative distances and orientations between the
participating satellites. Thus, the bene� ts of this approach come at
a cost because the new systems architecture poses very stringent
challenges in the areas of onboard sensing, high-level mission man-
agement and planning, and � eet-level fault detection/recovery.5;6
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The results in this paper focus on aspects of the mission plan-
ning in that they provide necessary conditions to initialize the ve-
hicles on a passive aperture. By passive aperture, we mean a (short
baseline) periodic formation con� guration that provides good, dis-
tributed, Earth imaging, for example, with an SAR. These passive
apertures have previously been designed using the closed-form so-
lutions provided by Hill’s equations (see Ref. 7) (also known as the
Clohessy-Wiltshire equations), which are linearized about a circular
reference orbit. There has also been analysis to develop apertures
that are insensitive to differential J2 disturbances based on nonlinear
dynamic models (see Ref. 8).

This paper presents the complete initialization procedure for
a large � eet of vehicles with an eccentric reference orbit. The
work builds on earlier results by Lawden,9 Carter and Humi,10 and
Carter11 on the derivation and solution of the homogenous equations
of relative motion for multiple spacecraft that are linearized about
an eccentric reference orbit. (See Ref. 10 for an extensive historical
perspective on the origin of these equations.) In particular, we pro-
vide the � rst presentation of the conditions necessary to initialize to
a closed-form aperture on an eccentric orbit (e 6D 0). This is a key
extension of the work by Carter/Lawden and an important point for
future research on formation � ying that previously had to use Hill’s
equations when working in a local vertical/local horizontal (LVLH)
frame (see for example Refs. 12 and 13). This new initialization
approach can also be used to estimate the fuel penalty associated
with maintaining the � eet con� guration with respect to an aperture
designed using Hill’s equation, even though the reference orbit is
eccentric. This effect is shown to be signi� cant, even for a typical
shuttle orbit with e D 0:005.

The key periodicity result in this paper is derived in two ways. One
way is based on the relative positions and velocities of the vehicles
in an LVLH frame. Because this approach uses a set of linearized
equations of relative motion, the periodicity condition is only as
accurate as the linearization itself. However, numerous nonlinear
simulations and analytic studies7 have shown that, for close forma-
tions, the linearized equations provide a very good representation
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of the relative motions of spacecraft about the appropriate refer-
ence orbit. We also derive the exact nonlinear condition from the
differential energy matching condition using the orbital elements.
With a consistent linearization approximation, it is then shown that
an equivalent set of initialization conditions can be obtained in this
second framework. Deriving the initialization condition from these
two different perspectives provides additional insight on the period-
icity constraint obtained using the linearized equations of relative
motion.

The equations of motion used to derive the initialization to a
passive aperture are valid for all reference orbit eccentricities, and
so the results in this paper extend the recent work in Ref. 14. In
particular, the initialization can be used in high-eccentricity types
of orbits, such as Molniya, that enable missions with longer ob-
servation periods over particular regions of interest. For example,
Figs. 1 and 2 show one such implementation for a reference orbit of
a D 46,000 km, e D 0:67, and i D 62:8 deg. The in-plane and out-
of-plane motion correspond to incremental changes in eccentricity
.±e D 0:0001/ and inclination .±i D 0:005/. An interesting feature
of these eccentric orbits is the � gure-8-shaped out-of-plane motion.
In comparison, small inclination differences for circular reference
orbits only result in one-dimensional out-of-plane motion. This in-
teresting feature of relative motion with eccentric orbits could be
used to provide higher uv-plane coverage per orbit for aperture � ll-
ing observations.

Fig. 1 In-plane formation for high-eccentricity reference orbit, non-
linear simulation for two orbits.

Fig. 2 Out-of-plane formation for high-eccentricity reference orbit,
nonlinear simulation for two orbits.

The paper continues with a brief outline of the linearized equa-
tions of motion and their solution. These equations are used to form
the monodromy matrix for the system, which is then used to solve
for the periodicity condition. The next section generalizes the ini-
tialization process to other points on the reference orbit. The initial-
ization is then analyzed using orbital elements. Finally, the homoge-
nous solutions are used to approximate the relative motion errors
for in-plane and out-of-plane formations that neglect the reference
orbit eccentricity during initialization. Also included is the effect of
these errors on a standard feedback control scheme and the fuel cost
associated with the necessary corrections.

Relative Dynamics in Eccentric Orbits
The following presents the dynamics for the relative motion of a

satellite with respect to a reference satellite on an eccentric orbit.
A brief development of the equations of motion appears hereafter,
and the full details are available in Refs. 9–11 and 15. The location
of each spacecraft within a formation is given by

R j D R f c C ½ j (1)

where R f c and ½ j correspond to the location of the formation cen-
ter and the relative position of the j th spacecraft with respect to
that point. The formation center can either be � xed to an orbiting
satellite, or just a local point that provides a convenient reference
for linearization. The reference orbit in the Earth-centered inertial
(ECI) reference frame is represented by the standard orbital elements
.a; e; i; Ä; !; µ/, which correspond to the semimajor axis, eccen-
tricity, inclination, right ascension of the ascending node, argument
of periapsis, and true anomaly.

With the assumption that j½ j j ¿ jR f c j, the equations of motion of
the j th spacecraft under the gravitational attraction of a main body

i
RR j D ¡

¡
¹

¯
jR j j3

¢
R j C f j (2)

can be linearized around the formation center to give

i R½ j D ¡
¹

jR f cj3

³
½ j ¡

3R f c ¢ ½ j

jR f cj2
R f c

´
C f j (3)

where the accelerations associated with other attraction � elds, dis-
turbances, or control inputs are included in f j . The derivatives in the
ECI reference frame are identi� ed by the preceding subscript i . A
natural basis for inertial measurements and scienti� c observations is
the orbiting (noninertial) reference frame 6c , � xed to the formation
center (Fig. 3). By the use of kinematics, the relative acceleration
observed in the inertial reference frame i R½ j can be related to the
measurements in the orbiting reference frame

i R½ j D c R½ j C 2i
PH £ c P½ j C i

PH £ .i
PH £ ½ j / C .i

RH £ ½ j / (4)

where i
PH and i

RH correspond to the angular velocity and acceleration
of this orbiting reference frame. The fundamental vectors ½ j ; R f c ,
and Pi H in Eqs. (3) and (4) can be expressed in 6c as

½ j D x j
Okx C y j

Oky C z j
Okz (5)

R f c D R f c
Okx (6)

i
PH D Pµ Okz (7)

Fig. 3 Relative motion in formation reference frame.
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where the unit vector Okx points radially outward from Earth’s cen-
ter (antinadir pointing) and Oky is in the in-track direction along
increasing true anomaly. This right-handed reference frame is
completed with Okz , pointing in the cross-track direction. All of the
proceeding vectors and their time rate of changes are expressed in
the orbiting reference frame 6c .

When Eqs. (3) and (4) are combined to obtain an expression for
c R½ j , and Eqs. (5–7) are used, it is clear that the linearized relative
dynamics with respect to an eccentric orbit can be expressed via a
unique set of elements and their time rate of change. This set consists
of the relative states [x j ; y j ; z j ] of each satellite, the radius R f c , and
the angular velocity Pµ of the formation center. Using fundamental
orbital mechanics describing planetary motion,16;17 the radius and
angular velocity of the formation center can be written as

jR f c j D
a.1 ¡ e2/

1 C e cos µ
; Pµ D

n.1 C e cos µ /2

.1 ¡ e2/
3
2

(8)

where n D .¹=a3/
1
2 is the natural frequency of the reference orbit.

These expressions can be substituted into the equation for c R½ j to
obtain the relative motion of the j th satellite in the orbiting formation
reference frame
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The terms on the right-hand side of this equation correspond to the
Coriolis acceleration, centripetal acceleration, accelerating rotation
of the reference frame, and the virtual gravity gradient terms with
respect to the formation reference. The right-hand side also includes
the combination of other external disturbances and control acceler-
ations in f j .

Note that care must be taken when interpreting and using the
equations of motion and the relative states in a nonlinear analysis.
The dif� culty results from the linearization process, which maps
the curvilinear space to a rectangular one by a small curvature ap-
proximation. Figure 4 shows the effects of the linearization and the
small curvature assumption. In this case, a relative separation in the
in-track direction in the linearized equations actually corresponds
to an incremental phase difference in true anomaly µ .

Although Eq. (9) is expressed in the time domain, monotonically
increasing true anomaly µ of the reference orbit provides a natural
basis for parameterizing the � eet time and motion.10 This obser-
vation is based on the fact that the angular velocity and the radius
describing the orbital motion are functions of the true anomaly, as
shown in Fig. 5. When µ is used as the free variable, the equations
of motion can be transformed using the relationships

P.¢/ D .¢/0 Pµ; R.¢/ D .¢/00 Pµ 2 C Pµ Pµ 0
.¢/0

(10)

Fig. 4 Mapping from curvilinear to linear space.

Fig. 5 Orbital plane, true and eccentric anomaly.

With these transformations, the set of linear time-varying (LTV)
equations describing the relative motion of the j th spacecraft in an
eccentric orbit can be written as

d

dµ
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As shown, the in-plane (x and y) and out-of-plane (z) motions are
decoupled and can be expressed separately. Equation (11) gives the
in-plane relative motion of the spacecraft with respect to the forma-
tion center in the true anomaly domain. The out-of-plane relative
dynamics in Eq. (12) correspond to the typical cyclic behavior that
is observed as a result of small changes in the inclination and/or
right ascension of the ascending node of the spacecraft with respect
to the formation reference frame.

As given in Refs. 9, 11, and 15 the homogenous solutions to these
LTV differential equations of motion are

x.µ/ j D sin µ
£
d1 j e C 2d2 j e

2 H .µ/
¤

¡ cos µ

µ
d2 j e

.1 C e cos µ/2
C d3 j

¶

(13)
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Fig. 6 Closed-form in-plane motion for e = 0:7.

y.µ/ j D
µ

d1 j C
d4 j

.1 C e cos µ/
C 2d2 j eH .µ/
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C sinµ
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z.µ/ j D sin µ

µ
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µ
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.1 C e cos µ/

¶
(15)

The di j in these solutions are integration constants for each space-
craft, and they are calculated from the corresponding initial condi-
tions. Two further important relationships are

H .µ/ D
Z µ

µ0

cos µ

.1 C e cos µ/3
dµ D ¡.1 ¡ e2/¡ 5

2

£
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3eE

2
¡ .1 C e2/ sin E C

e

2
sin E cos E C dH

¶
(16)

cos E D
e C cos µ

1 C e cos µ
(17)

where E is the eccentric anomaly that can be expressed as a function
of the true anomaly. Also, dH is the integration constant calculated
from H .µ0/ D 0. For a typical case where µ0 D 0, dH is also zero.

Remark 1: These solutions are available in the literature in vari-
ous forms using different reference frames and variables. The � rst
derivation with singularities in the closed-form solution was pro-
vided by Lawden in 1963.9 The results by Carter,11 with the singu-
larities removed from the solutions, forms the basis of our analysis.
These homogenous solutions are extremely useful for well-behaved
numerical and analytical analysis on the shape, structure, and opti-
mization of passive apertures in eccentric reference orbits. Also note
that the same solutions can be obtained via incremental changes in
orbital elements, as presented by Marec.15

Figures 6 and 7 show an example of the relative motion of two
spacecraft when the reference orbit eccentricity is e D 0:7. In this
particular case, the spacecraft in the formation are initialized to pro-
vide a periodic uv-plane (observing plane) coverage. The changes
in the closed-form solution from the typical Hill’s equation result
(e D 0) are readily apparent in the � gures. The next section presents
the necessary conditions for initializing to these periodic solutions.

Monodromy Matrix and Periodicity Conditions
The ability to form exact passive apertures requires the existence

of periodic solutions to the unforced equations of motion.7 As indi-
cated by Eq. (15), the out-of-plane dynamics are naturally periodic
as a result of the geometry of the problem. For the in-plane motion,
Eqs. (13) and (14) represent the unforced closed-form solutions.
Note that both the in-track (y) and radial (x ) components consist of

Fig. 7 Closed-form out-of-plane motion for e = 0:7.

either constants, sinusoidal terms, or terms that include H .µ /, which
are the only ones that show diverging behavior. For both of these
equations, the coef� cient d2 j , which is a function of initial relative
states, multiplies H .µ/. Thus, any periodic solution will require that
this coef� cient be zero. It can be demonstrated that the linear time-
varying equations describing the in-plane motion in Eq. (11) have a
nontrivial periodic solution using the following result.

Theorem: Given an LTV dynamic description of

Pv.t/ D A.t/v.t/; v.t0/ D v0 (18)

v.t/ D 8.t; ¿/v.¿ / (19)

where A.t/ is T periodic, that is, A.t C T / D A.t/. For any t0, there
exists a nonzero initial state v0 such that the solution v.t/ is T peri-
odic [i.e., v.t0/ 6D 0 and v.t0 C T / D v.t0/] if and only if at least one
eigenvalue of 8.T; 0/ is unity.

Proof: See Ref. 18.
Here [8.t; ¿/ : v.¿ / ! v.t/] is the fundamental matrix that de-

scribes the mapping of a particular initial condition v.¿ / through
the dynamics. For the case t ¡ ¿ D T , the fundamental matrix takes
a special form called a monodromy matrix,19 which can be used
to analyze both the orbit periodicity and stability. If there exists a
T -periodic mapping (where T is the orbit period), the base con� g-
uration is a � xed point.

Note that the A matrix of the in-plane dynamics in Eq. (11) is
T periodic because all elements are either constant or sinusoidal in
µ . Thus, to demonstrate that the relative orbital motion is periodic,
we must � nd the transformation matrix that maps the initial states at
(µ0 D 0) to the � nal states at .µ f D 2¼/ and then prove that 8.2¼; 0/
has at least one eigenvalue equal to one. (It is assumed in this sec-
tion that the initialization is done at µ0 D 0, but this is generalized
in the following subsections to other values of µ 6D 0.) After some
manipulation (see Appendix A for the full details), for the initial
conditions at µ0 D 0, the integration constants from Eqs. (13) and
(14) can be expressed as a function of the initial states v0
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with corresponding values of the matrix elements

p11 D 1=e; p22 D .2 C e/.1 C e/2=e2; p23 D .1 C e/3=e2

p32 D ¡[2.1 C e/=e]; p33 D ¡[.1 C e/=e]

p41 D ¡[.1 C e/2=e]; p44 D .1 C e/ (21)
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The � nal states (at µ f D 2¼ ) can also be written in terms of the
integration constants
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with the corresponding values of the matrix elements

w11 D e; w12 D 2e2 H .2¼/; w22 D ¡[e=.1 C e/2]

w23 D ¡1; w32 D 2eH 0.2¼/.1 C e/
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¤
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The integration constants expressed as a function of the initial
states from Eq. (20) can be combined with Eq. (22) to describe
the � nal states. Then, by the use of the matrix elements described
by Eqs. (21) and (23), Eq. (22) can be rewritten as (full details in
Appendix A)
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)v j .2¼/ D 8 j .2¼; 0/v j .0/ (25)

The transformation matrix in Eq. (25) is the fundamental matrix of
the LTV system at µ f D 2¼ scaled by its value at µ0 D 0. Because all
eigenvalues of the transformation matrix in Eq. (25) are equal to 1,
the result given can be used to obtain T -periodic solutions for this
system when 0 < e < 1.

The following sections continue with the analysis of the transfor-
mation matrix to obtain conditions on the vehicle states that yield
nontrivial periodic motions. Note that these periodicity conditions
are only as accurate as the linearized relative motion model used in
their derivation. However, numerous nonlinear simulations and an-
alytic studies7 have shown that, for close formations, the linearized
equations provide a very good representation of the relative motions
of spacecraft about the appropriate reference orbit.

Initialization
As given earlier, a solution is T periodic if v j .2¼/ D v j .0/. This

is clearly true for y0, the in-track velocity differences, and x , the
relative radial position. However, to ensure that

y.2¼/ D y.0/; x 0.2¼/ D x 0.0/ (26)

it follows directly from Eq. (24) that

w12[p22x.0/ C p23 y 0.0/] ´ 0 (27)

w42[p22x.0/ C p23 y 0.0/] ´ 0 (28)

With e 6D 0, both w12 and w42 are nonzero, and so these constraints
both require that p22x.0/ C p23 y0.0/ ´ 0, which gives the periodicity
or no-drift condition at µ0 D 0

y0.0/=x.0/ D ¡.p22=p23/ D ¡[.2 C e/=.1 C e/] (29)

This condition provides a relationship between the initial radial po-
sition x.0/ and in-track velocity differences y 0.0/ that must be used
to obtain a periodic relative motion of the spacecraft. Here y0.0/ cor-
responds to the true anomaly rate of change of the in-track relative
position, as observed in the noninertial formation reference frame.
Note that the periodicity condition does not constrain y.0/ (corre-
sponds to phasing in the true anomaly of the spacecraft) and x 0.0/

(corresponds to an incremental radial velocity difference as a result
of radial � ring at µ D 0). As de� ned earlier, µ D 0 corresponds to the
formation center being at the perigee of the reference orbit, which
does not necessarily correspond to each spacecraft in the forma-
tion being at their individual orbit perigees. These extra degrees of
freedom coming from radial relative velocity (in transformed form)
x 0.0/ and in-track separation y.0/ can be used to de� ne the shape
and scale of the relative motion, and they are consistent with the
extra degrees of freedom that exist in the related no-drift solutions
associated with Hill’s equations.

In applications that do not require absolute orbital element match-
ing, the only condition for passive apertures is that the drift rates be
matched, that is, [y 0.0/=x.0/] j is the same for all spacecraft. This is
identical to rede� ning the formation center to a reference orbit that
matches the natural frequency of the aperture vehicles and, thus, ob-
taining no-drift conditions with respect to this new formation center.
Such an approach is shown in the results of Fig. 1.

Equation (29) can also be expressed in the time domain as

Py.0/

x.0/
D ¡

n.2 C e/

.1 C e/
1
2 .1 ¡ e/

3
2

(30)

Note that, as e ! 0, Eq. (30) converges to the differential en-
ergy equalization condition for a circular reference orbit, that is,
Py.0/=x.0/ D ¡2n. This condition can easily be identi� ed from the
homogenous solution of the Cholessy–Wiltshire equations describ-
ing the linearized relative dynamics with respect to a circular refer-
ence orbit (see Ref. 17).

Also note that a set of initialization conditions can be derived us-
ing the orbital elements and their incremental changes, as is shown
later in this paper. That approach demonstrates that the periodic-
ity or no-drift condition is equivalent to the linearized form of the
zero-differential energy condition. The following generalizes the
initialization procedure to other values of µ .

General Initialization
The initialization for periodic motion at other values of µ can

also be obtained using Eqs. (13), (14), (A1), and (A2). For exam-
ple, consider a spacecraft at some µd 6D 0 with current values of
the scaled position and velocities given by x.µd /; y.µd /; x 0.µd /, and
y0.µd /. When it is assumed that these values are not consistent with
a periodic solution, they can be modi� ed using Eq. (29). To start,
� rst use Eqs. (13), (14), (A1), and (A2) to de� ne
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664

x.µd/

y.µd/

x 0.µd/

y 0.µd/

3

775 D

2

664

r1

r2

r3

r4

3

775

2

664

d1

d2

d3

d4

3

775 ´ RD (31)

µ
x.0/

y0.0/

¶
D

µ
r30

r40

¶
D (32)

where the ri are the appropriate row vectors of coef� cients for the
di and ri0 is the row vector of coef� cients evaluated at µ D 0. Equa-
tion (29) constrains the relationship between y 0.0/ and x.0/, which
can be rewritten using Eq. (32) as

f¡[.2 C e/=.1 C e/]r30 ¡ r40gD D 0 (33)

Note that it is straightforward to demonstrate from this expression
that the periodicity constraint is equivalent to setting d2 D 0. To
complete the initialization process, we assume that x.µd/ and y.µd/
are constrained to the values provided earlier and that only the values
of y0.µd / and x 0.µd/ can be changed to achieve periodic motion.
These assumptions provide a total of three constraints on the four
unknowns (the di ). The fourth constraint can be developed in a
variety of ways, depending on the mission objectives, and several
alternatives are detailed in the following.

Symmetric Motion
For example, one approach would be to constrain the periodic

motion so that it is symmetric in-track about the origin. Using y.µ/



INALHAN, TILLERSON, AND HOW 53

from Eq. (14) evaluated at µ D 0 and ¼ and setting the average to
zero yields the constraint

[1 e.1 C e/H .0/ C e.1 ¡ e/H .¼/ 0 .1 ¡ e2/¡1]D D 0 (34)

Appending this constraint to the three given earlier would
completely de� ne one type of periodic motion.

Fuel Optimized
In general, the symmetric initialization requires that both x 0.µd /

and y 0.µd/ be modi� ed, which can be fuel intensive. This naturally
leads to the question of whether there is a way to select the di

that minimizes the fuel cost associated with changing x 0.µd / and/or
y0.µd /. One solution to this problem is to pose it as an optimization
that minimizes the 1V required to obtain the initial velocities that
would be consistent with periodic relative motion starting at µd . To
proceed, de� ne the desired velocities for periodic motion x 0.µd/des

and y 0.µd/des in terms of the given initial velocities, x 0.µd /init and
y0.µd /init , and the required incremental velocity changes, 1Vx and
1Vy , as

x 0.µd/des D x 0.µd/init C 1Vx ; y0.µd/des D y 0.µd/init C 1Vy

(35)

The x 0.µd /des and y 0.µd /des can be written in terms of the di using
Eq. (31), and so the total 1V can be expressed in terms of the given
initial values and the unknown di . When the slack variables 1V C

and 1V ¡ are introduced for each 1V , the optimization problem
can be written as the linear program (LP):

J D min cT U

subject to AeqU D beq

AineqU · bineq (36)

where

U T D
£
1V C

x 1V ¡
x 1V C

y 1V ¡
y d1 d2 d3 d4

¤
(37)

cT D [1 1 1 1 0 0 0 0] (38)

Aeq D

2

6666664

1 ¡1 0 0 ¡r3

0 0 1 ¡1 ¡r4

0 0 0 0 r1

0 0 0 0 r2

0 0 0 0 ¡[.2 C e/=.1 C e/]r30 ¡ r40

3

7777775
(39)

beq D

2

666664

¡x 0.µd /init

¡y0.µd /init

x.µd/

y.µd/

0

3

777775
(40)

and Aineq is an 4 £ 8 matrix of zeros with .Aineq/11 D .Aineq/22 D
.Aineq/33 D .Aineq/44 D ¡1 and bineq is an 4 £ 1 vector of zeros. These
inequality constraints force the slack variables to be positive. The
LP problem has four variables and nine constraints. The equality
constraint satis� es the position constraints in Eq. (31), the velocity
constraints in Eq. (35), and the periodicity constraint inEq. (33). The
solution of the LP problem contains the four di and the 1V required
to change the given initial velocities to the desired velocities for
periodic motion.

The LP problem was tested on a variety of different cases, and
the solution always resulted in only a change in the in-track veloc-
ity to meet the periodicity constraint. The radial velocity remained
unchanged from the (potentially random) initial value that was pro-
vided to the problem. This suggests the following simple alternative
solution.

Velocity Constraint
The � nal formulation simply imposes the constraint that the ra-

dial velocity not change from the initial value provided. Thus, x.µd/,
y.µd /, and x 0.µd/ must be the values provided earlier, and only
y0.µd / can be changed by the initialization process. The periodicity
constraint in Eq. (33) then provides the fourth constraint:

2

6664

x.µd/

y.µd/

x 0.µd /

0

3

7775
D

2
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r1

r2

r3

f¡[.2 C e/=.1 C e/]r30 ¡ r40g

3

775D ´ QRD

In this case the constants of integration in the problem are given by

D D QR¡1

2

6664

x.µd /

y.µd /

x 0.µd/

0

3

7775

which then completely de� nes the initialization process for any
value of µ .

Examples
Sample initializations and the resulting trajectories are presented

in Figs. 8 and 9. The initializations were determined for µd D 5 and

Fig. 8 Initialization (µd = 5 deg) and trajectory for four orbits, ± rep-
resents initial constrained position.

Fig. 9 Initialization (µd = 45 deg) and trajectory for four orbits,± rep-
resents initial constrained position.
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45 deg and simulated in a commercially available high-� delity non-
linear orbit propagator. The ± represents the given initial position.
The trajectory was propagated for four orbits using the initial con-
ditions determined by the LP initialization approach. As shown,
there is no noticeable drift in either example. The results with µd D
5 deg are similar to those shown in Fig. 1, which were initialized at
µd D 0 deg using Eq. (30). However, the resulting periodic motions
at larger values of µ are quite complicated, and, as is clearly shown
for the case initialized at µd D 45 deg, the periodic motion is not
necessarily centered about the origin.

Periodicity Conditions: Orbital Approach
This section presents the necessary conditions for obtaining a

no-drift solution in eccentric orbits using the orbital elements.
The energy level of the reference orbit16 with orbital frequency
n D .¹=a3/

1
2 and gravitational constant ¹ is given by

" D ¡.¹=2a/ D ¡
£
.n¹/

2
3
¯

2
¤

(41)

The necessary condition to obtain the no-drift conditions is that
" D "i 8 i 2 f1; 2; : : : ; N g, which effectively matches the orbital pe-
riods of the N satellites to the formation center. At the perigee for
the formation center, the energy difference between the i th satellite
and the formation center can be written as

±"i D "i ¡ " D
¡
V 2

pi

¯
2 ¡ ¹

¯
r pi

¢
¡

¡
V 2

p

¯
2 ¡ ¹=r p

¢
(42)

Thus, the condition for zero differential energy is that

V 2
pi

¡ V 2
p D 2¹

³
r p ¡ r pi

r pr pi

´
(43)

By the use of the following relation for eccentricity

e D .ra ¡ r p/=.ra C r p/ D 1 ¡ r p=a (44)

(ra and r p correspond to the orbital radius at apogee and perigee),
the eccentricity difference can be written as an incremental change
in perigee radius ±ri

±ei D ei ¡ e D
¡
1 ¡ r pi

¯
a
¢

¡ .1 ¡ r p=a/

D ¡
£¡

r pi ¡ r p

¢¯
a
¤

D ¡.±ri =a/ (45)

By the use of Eqs. (44) and (45), Eq. (43) can be rewritten as

Vpi

Vp
D

s

1 ¡
2¹

V 2
p

µ
±ri

a2.1 ¡ e/.1 ¡ ei /

¶

D

s

1 C
2¹

aV 2
p

µ
±ei

.1 ¡ e/.1 ¡ ei /

¶
(46)

which is the exact expression for differential energy matching. Note
that satisfying this condition is complicated by the coupling that
exists between Vpi and ei [shown in Eq. (48)]. This � nal expression
can be approximated as

Vpi

¯
Vp

»D 1 C
¡
¹

¯
aV 2

p

¢£
±ei

¯
.1 ¡ e/2

¤
(47)

assuming that j±ei j ¿ 1 and using Vp ¸ Vcs . Here Vcs D .¹=a/
1
2 is

the circular velocity for a given semimajor axis a. The statement
that Vp ¸ Vcs comes directly from the fact that the perigee velocity
can be de� ned 16 as

V 2
p D

¹.1 ¡ e2/

a.1 ¡ e/2
D

¹.1 C e/

a.1 ¡ e/
(48)

so that Vp ¸ Vcs for any 0 · e < 1.
When an eccentric reference orbit .0 < e < 1/ is focused on, with

j±ei j ¿ e, Eq. (47) becomes

±Vpi
»D .¹=aVp/

£
±ei

¯
.1 ¡ e/2

¤
D ¡

¡
¹

¯
a2Vp

¢£
±ri

¯
.1 ¡ e/2

¤

(49)

where the eccentricity difference has been replaced with a perigee
radius difference. Then, by the use of Eq. (48), Eq. (49) can be
reformulated as

±Vpi
»D ¡

¹

a2

a
1
2 .1 ¡ e/

¹
1
2 .1 ¡ e2/

1
2

±ri

.1 ¡ e/2
D ¡

¹
1
2
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3
2 .1 C e/

1
2

(50)

to obtain

±Vpi abs D ±Vpi
»D ¡

n±ri

.1 ¡ e/
3
2 .1 C e/

1
2

(51)

Essentially, thisnecessary condition for differential energymatching
accounts for the difference in perigee radius. Note that ±ri actually
represents an eccentricity difference, as described in Eq. (45).

By the use of the kinematic relationship ±Vabs D ±Vrel C ! £ ±r,
the differential velocity in the linearized framework, that is, Fig. 4,
with respect to a reference attached to the formation center can be
calculated for a given geometry. As discussed earlier, the lineariza-
tion maps the curvilinear space to a rectangular one. As such, with
the geometry shown in Fig. 4 at µ D 0; ±Vpi rel and ±ri correspond to
the relative in-track velocity y0 and radial separation x , respectively.
Using this fact and ! D Pµ.0/, where

Pµ.0/ D
n.1 C e/2

.1 ¡ e2/
3
2

D
n.1 C e/

.1 ¡ e/
3
2 .1 C e/

1
2

the relative velocity increment as observed by the formation center
can be written as

±Vpi rel
»D ¡

n.2 C e/±ri

.1 ¡ e/
3
2 .1 C e/

1
2

(52)

Equation (52) is the same solution as described in Eq. (30), which
assures that the spacecraft do not drift away from each other. This
completes the discussion of the differential energy corrections us-
ing orbital elements. These results demonstrate that equivalent an-
swers can be obtained using the equations/solutions available in both
frameworks, thereby providing additional insight on the periodicity
constraint obtained using the linearized equations of relative motion.

Modeling Error Effects
Fuel optimal aperture forming is crucial for space applications be-

cause fuel is a very precious resource on-orbit. However, ignoring
even a very small eccentricity in the reference orbit, for example,
e D 0:005, typical of shuttle missions, can result in considerable
relative motion errors in the passive apertures. These errors in gen-
eral cause the spacecraft to drift away from the desired formation
and, thus, would require corrective thruster � rings. Also with an
eccentric reference orbit, Eqs. (13–15) show that the shape of the
closed-form solution is not a perfect ellipse, but is actually skewed
and scaled. Thus, any formation-keeping algorithm that does not ac-
count for the changes due to eccentricity will have to work against
the natural motion of the vehicles. Both of these errors will result
in a continuous depletion of the fuel.

This section investigates the errors in the desired relative motion
that result from assuming a circular reference orbit. Two distinct
types of modeling errors are usually observed:

1) A formation initialization based on a circular orbit assumption
typically results in differential energy errors. This error is observed
as two different types of motion relative to the formation center, an
in-track drift and a change in the size of the periodic relative motion.

2) As discussed, the shape of a closed-form solution based on an
eccentric formation center is not a perfect ellipse. Also, the � rings to
form relative motion ellipses based on a circular orbit assumption7

would actually result in a different periodic relative motion pattern
(in both the in-plane and cross-track directions). These both result
in relative motion errors.

This section analyzes these modeling errors in three main parts.
The � rst two parts show the effect of differential energy and relative
motion errors on the relative motion in the in-plane and cross-track
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directions. The third part presents numerical results based on a sim-
ple control algorithm using an underlying circular orbit assumption.
Note that although all earlier analysis was presented for 0 < e < 1,
this section focuses on cases with e ¿ 1 to simplify the expressions
for the modeling errors.

Differential Energy Errors
To identify the modeling errors, the homogenous solutions in

Eqs. (13) and (14) can be rewritten in terms of the periodic, that is,
cos and sin, parts and terms that are a function of H .µ/

x.µ/ j D H .µ /
£
2d2 j e

2 sin.µ/
¤

C sin µ [d1 j e]

¡ cos µ

µ
d2 j e

.1 C e cos µ /2
C d3 j

¶
(53)

y.µ/ j D H .µ /[2d2 j e.1 C e cos µ/] C sin µ

µ
d3 j

.1 C e cos µ/
C d3 j

¶

C cos µ [d1 j e] C
µ

d1 j C
d4 j

.1 C e cos µ/

¶
(54)

The only terms that can result in drift are the ones associated with
H .µ/, and, from Eq. (16), the corresponding drift term is Hdrift.µ/ D
.1 ¡ e2/¡5=2[3eE=2]. Hdrift.µ/ grows linearly with the eccentric
anomaly E and is also a monotonic function of µ [see Eq. (17)].
The analysis in the initialization section showed that a periodic mo-
tion requires that the terms associated with H .µ / be eliminated,
which is accomplished by setting d2 j D 0. This constraint is equiv-
alent to the differential energy matching conditions, as identi� ed in
the general initialization section. However, a modeling error in the
reference orbit can result in a differential energy error (correspond-
ing to d2 j 6D 0). As shown in Eq. (54), the result would be a drift
in the in-track (y) direction. This drift would be accompanied by a
secular periodic motion [periodic motion with increasing amplitude
due to the in� uence of H .µ/] in both the radial (x ) and in-track (y)
directions. However, as shown in Eqs. (53) and (54), this periodic
motion would be scaled by an additional factor of e ¿ 1.

An analytic solution can be developed for the expected drift rates
if the nonzero reference orbit eccentricity is ignored. Consider a
formation initialization maneuver at a desired radial separation x.0/
(chosen at µ D 0 to simplify the analysis). An in-track impulsive
� ring is needed to zero the differential energy of the two spacecraft.
With these initial conditions, Eq. (25) can be used to predict the
expected drift per orbit as

±y.2¼/drift D w42[p22x.0/ C p23 y0.0/] (55)

For this initialization approach, x.0/ is the semiminor axis of the
expected relative motion ellipse in the xy plane. If a circular orbit
assumption had been made, that is, e D 0, then the in-track � ring
would be performed to set y0.0/ D ¡2x.0/. However, if the reference
orbit is actually eccentric, then, by the use of the expressions for
w42; p22, and p23, the drift would be

±y.2¼/drift D 2eH .2¼/.1 C e/

£
µ

.2 C e/.1 C e/2

e2
x.0/ C

.1 C e/3

e2
y 0.0/

¶
(56)
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5
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¡

2.1 C e/3

e2

¶
x.0/

(57)

D
6¼e.1 C e/3

.1 ¡ e2/
5
2

x.0/ (58)

If 0 < e ¿ 1 is assumed, the drift observed during aperture forming
would be approximately

±ydrift per orbit
»D 6¼ex0 (59)

which assumes that at µ D 0 a circular orbit assumption was made
and the natural frequency of the circular orbit was set equal to

Fig. 10 In-plane modeling error effect e = 0:005.

Fig. 11 In-plane differential J2 effect e = 0:005.

the angular velocity of the actual eccentric orbit at µ D 0, that is,
ncirc D Pµ.0/.

To analyze the impact of this drift rate, consider a simple for-
mation of two spacecraft initialized with 1-km radial and 0:6-km
cross-track separation. The relative in-track velocity is set based
on the assumption of a circular reference orbit. The reference orbit
.a D 6900 km and i D 52 deg) actually has e D 0:005, which corre-
sponds to a modeling error. The orbits of the two spacecraft were
propagated in a high precision propagator and the relative motion
results are shown in Fig. 10. These results clearly illustrate that, in-
stead of a closed ellipse, the relative positions of the spacecraft drift
in the in-track direction. In fact, after 16 orbits (¼1 day), the drift
corresponds to roughly 75% of the original baseline, which is con-
sistent with the predictions from Eq. (59) (16 £ 6¼ex0 ¼ 1:5 km).
This drift is removed if the initial relative velocity is modi� ed as
given in Eq. (30); the solution tracks the desired periodic relative
orbital motion.

To further illustrate the signi� cance of this modeling error, it can
be compared to other large relative disturbances, such as the dif-
ferential J2 . Figure 11 shows the effect of differential J2 on the
formation during 16 orbits. For this case the formation was initial-
ized using the corrected initialization (to account for e 6D 0), but the
simulation included the effects of differential J2. When compared
with Fig. 10, these results clearly show that ignoring the reference
orbit eccentricity can dominate the differential disturbances.

A second type of initialization error could occur if the natural
frequency ncirc of the circular reference orbit is set to be the natural
frequency of the eccentric reference orbit n, that is, setting ncirc ´ n.
With the same type of analysis shown earlier, (see Appendix B for
details), the drift in this case would be
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±y.2¼/drift per orbit2
»D ¡18¼ex.0/ (60)

which is a factor of 3 larger than the preceding case.
The 1V to perform the correct initialization [Eq. (30)] differs by

only a factor of e from the � rings designed using a circular reference
orbit assumption because (see Appendix B)

Pyecc.0/ ¡ Pycirc.0/ »D ¡3nx.0/e for e ¿ 1 (61)

However, this (possibly larger) fuel burn ensures that the space-
craft attains the desired relative motion and will not drift from the
formation center (in the absence of any additional disturbances).
As is shown later in this section, this change in the fuel burn is
signi� cantly smaller than would be expected for a simple control
scheme that constantly attempts to correct for these drift errors using
a circular orbit assumption.

Relative Motion Errors: In-Track and Radial
The following investigates the in-plane relative motion errors us-

ing a slightly different formation initialization approach, but, as
before, it is assumed that the reference orbit eccentricity is ignored
in the design. In particular, consider the effect of setting the natural
frequency of the circular reference orbit ncirc equal to the frequency
n of the eccentric reference orbit, that is, ncirc D n, which is the same
assumption used to derive the drift formula in Eq. (60).

To determine the initialization approach, consider the well-known
homogenous solutions to the relative motion with a circular refer-
ence orbit17 (x is radial, and y is in-track)

x.t/ D
Px0

ncirc
sin ncirct ¡

³
2 Py0

ncirc
C 3x0

´
cos ncirct C

³
2 Py0

ncirc
C 4x0

´

(62)

y.t/ D
2 Px0

ncirc
cos ncirct C

³
4 Py0

ncirc
C 6x0

´
sinncirct

C
³

y0 ¡
2 Px0

ncirc

´
¡ .3 Py0 C 6ncircx0/t (63)

Given that the spacecraft is initially separated by 2b0 in the
in-track direction from the formation center, (y0 D 2b0; x0 D 0;
Px0 D 0; Py0 D 0/, assume that the goal of the initialization is to gen-
erate a relative periodic motion ellipse with semimajor axis 2b0 in
the xy relative motion plane. However, once again, the initialization
process will be based on the assumption of a circular reference or-
bit. (Note that µ D 0 was selected to simplify the following analysis
and to yield compact representations of the associated errors. The
approach shown could be used to develop equivalent results for any
µ .) In this case, to obtain a 2b0 £ b0 relative motion ellipse centered
at the origin of the formation center, a radial � ring of Px0 D nb0 is ini-
tially applied to the spacecraft (recall the assumption that ncirc D n).
As a result of the radial � ring at µ D 0 there is no violation of the
periodicity constraint, that is, d2 j D 0, for the linearized equations
of motion. However, in this case, the size of the relative motion el-
lipse would not be correct because, for an eccentric reference orbit,
the angular velocity of the reference orbit Pµ is not a constant. In
fact, it can be shown that a � ring of Px.0/ D Pµ.0/y.0/=2 D Pµ.0/b0

would actually result in a relative motion that is symmetric about
the formation center at the origin, that is, y.¼/ D ¡y.0/ D ¡2b0.
However, a radial � ring of Px0 D nb0 results in a shape error since
(see Appendix B)

yerr.¼/ D y.¼/ ¡ ydes
»D 4ey.0/ (64)

Because yerr.2¼/ D 0, this corresponds to an error of 2ey.0/ in the
observed semimajor axis. For an eccentricity of e D 0:005 and semi-
major axis of y.0/ D 2b0 D 200 m, this would result in a 2-m error
(1% decrease of the semimajor axis). Also note that y.¼ / will be
shifted 4 m from its desired location at ¡2b0. A similar analysis in
Appendix B for the x direction shows that the semiminor axis error
would be on the order of 1 m for this case.

As with the preceding example, the 1V to initialize using the
eccentric reference orbit analysis also differs by only a factor of e
from the � rings designed using a circular reference orbit assumption
because (see Appendix B)

Pxecc.0/ ¡ Pxcirc.0/ »D ney.0/ for e ¿ 1 (65)

Notice that after the correct initialization, the relative motion would
not be a perfect ellipse (it will follow its own natural motion), as
indicated by the homogenous solutions given in Eqs. (13) and (14).
However, it would be symmetric and have the desired semimajor
and semiminor axis values.

Relative Motion Errors: Cross-Track
As noted earlier, the equations of motion in the cross-track direc-

tion [Eq. (12)] decouple from the in-plane motion as a result of the
linearization. Thus, the error analysis can also be done separately
for this direction. Because the motion in the cross-track direction
is periodic with no drift terms [see Eq. (15)], the modeling errors
discussed earlier would lead to relative motion errors. Note that the
homogenous solution to the cross-track Hill’s equation is19

z.t/ D .Pz0=ncirc/ sin ncirct C z0 cos ncirct (66)

If the initial condition is z.0/ D 0, then with a circular reference
orbit, the required cross-track � ring to create periodic relative mo-
tion of amplitude c0 at µ D f¼=2; 3¼=2g would be Pz0 D c0n (as-
suming ncirc D n). However, this will be incorrect because the ref-
erence orbit is actually eccentric, the � ring should actually be
Pz0 D c0 Pµ.0/=.1 C e/ (see Appendix B). The error resulting from this
incorrect � ring is symmetric and can be approximated as

zerr.¼=2/ D z.¼=2/ ¡ zdes.¼=2/ D ¡ec0 D ¡zerr.3¼=2/ (67)

For e D 0:005 and c0 D 200 m, the cross-track relative motion error
would be on the order of 1 m. Equations (64), (67), (B11), and (B13)
provide a detailed analysis of the modeling errors associated with a
circular orbit assumption. The following section analyzes the effect
of these modeling errors on the fuel budget using a simple feedback
control scheme.

Effect on Fuel Usage
In a feedback control system it is expected that the results of

these initialization errors would be corrected at the expense of extra
fuel. To demonstrate this idea, consider a simple formation-keeping
algorithm based on a circular reference orbit assumption that is em-
ployed after the initialization. In this algorithm, formation keeping
is done using a series of impulsive thruster � rings at the location
of initialization and its conjugate point on the reference orbit. The
approach is to calculate the corrective impulse vector so that this
correction takes the vehicle from the current location to the desired
location in one-half of an orbit. To be consistent with the earlier
analysis, assume that the thruster � rings are calculated using the
state propagation based on a circular reference orbit, that is, using
Eqs. (62) and (63) instead of the eccentric ones, Eqs. (13) and (14).

First consider the periodic relative motion ellipse example given
in the relative motion errors section. Because there are no differen-
tial energy errors in this case, the error associated with an incorrect
radial � ring is periodic. As a result, additional radial � rings are re-
quired to correct the semimajor axis (nominally 2b0 ) of the relative
motion ellipse at µ D i¼ and µ D .i C 1/¼ , for i D f1; 2; : : :g. For
an arbitrary i , the radial � ring ± Px.i¼/ is used at time µ D .i/¼ to
correct for the error resulting from the � ring at µ D .i ¡ 1/¼ and
to make sure that the relative motion ellipse is the correct size at
µ D .i C 1/¼ . Unfortunately, this � ring introduces other errors be-
cause the correction is designed using the dynamics associated with
a circular reference orbit. As a result, another correction will be re-
quired at µ D .i C 1/¼ , and this will introduce similar errors. Thus,
the system would enter a cyclic error correction pattern (limit cycle)
that results in continuous fuel depletion.

The fuel cost for formation keeping based on the initialization
with only a radial � ring was calculated numerically. A series of
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Fig. 12 Limit-cycle behavior for modeling error (e = 0.01), radial
thruster � ring.

simulations were performed for many cases with ranging values of
e and b0. The resulting fuel burn was found to be approximately

1Vmin per orbit D ± Pxr
per orbit

»D 3b0ne (68)

to correct for the size of the relative motion ellipse. Equation (68)
indicates that the fuel used is a linear function of e and the aperture
size b0, which is the semiminor axis of the 2 £ 1 relative motion
ellipse. Figure 12 shows a typical limit cycle behavior observed
using this simple control algorithm.

For the aperture forming case with in-track � ring as discussed
in the differential energy equalization section, there will be both
differential energy and relative motion errors that result from the
circular orbit assumption. Simulationswere performed of the control
algorithm described earlier (using in-track � rings) for many values
of e and b0 . In this case, the necessary corrections were predicted
to be

± Py i
per orbit

»D 2± Pxr
per orbit; ± Px i

per orbit
»D 2¼± Px r

per orbit (69)

where ± Pyi
per orbit is used to correct the differential energy errors

and ± Px i
per orbit is used to correct for the drift effect on the relative

motion ellipse. Firings are made at µ D .2i § 1
2 /¼ per orbit. The

simulations predicted a fuel usage for this case of

1Vmax per orbit
»D 81Vmin per orbit (70)

which is almost an order of magnitude higher as a result of the
secular drift associated with the differential energy errors. For ex-
ample, with an aperture semiminor axis of b0 D 1000 m and the
natural frequency associated with an 800-km circular orbit, an ec-
centricity error of e D 0:001 would result in1Vmax per orbit

»D 2:6 cm/s
and 1Vmin per orbit

»D 0:35 cm/s for this particular feedback control
scheme.

These two � nal examples were designed to show the dif� culties
associated with using a simple feedback correction scheme that is
based entirely on the circular reference orbit assumption to correct
for these modeling errors. Obviously, different implementations of
the error correction and � ring patterns would change the fuel usage.
However, the results of these examples do show that the reference
orbit eccentricity could have an important effect on the fuel budget
of a formation � ying mission if not correctly accounted for in the
control design.

Conclusions
This paper generalizes previous aperture design approaches and

presents a complete initialization procedure for a � eet of vehicles
with an eccentric reference orbit, for example, Molniya. The main
result of the paper is derived in two ways. The primary analysis uses
the solutions of the linearized equations of relative motion with re-
spect to an eccentric reference orbit. These solutions are used to

� nd the necessary and suf� cient conditions on the initial states that
produce periodic solutions, that is, the vehicles return to the initial
relative states at the end of each orbit. In the second method, the
orbital elements are used to derive the exact nonlinear condition
that ensures periodic relative motion from the differential energy
matching condition. By the use of a consistent linearization approx-
imation, it is then shown that an equivalent set of initialization con-
ditions can be obtained in this second framework. This connection
provides additional insight on the periodicity constraint obtained
using the linearized equations of motion.

The paper also presents analytic formulas showing the type and
magnitude of formation errors that can result from using a circular
reference orbit assumption. These errors are veri� ed in a nonlin-
ear simulation and compared to other differential disturbances, for
example, J2, for a typical low-Earth-orbit formation with in-plane
and out-of-plane components. The drift results show that ignor-
ing the reference orbit eccentricity (for e ¼ 10¡3 and aperture size
¼1000 m) can be a dominant additional source of error. A simple
control scheme was also used to evaluate the closed-loop response
when there is a modeling error in the reference orbit, for example,
the control design incorrectly assumes e D 0. Simulation results pro-
vide bounds on the fuel usage to account for the resulting modeling
errors. The results clearly show that the modeling errors (and how
they are handled) can have a large impact on the fuel usage for
formation � ying control.

Appendix A: Monodromy Matrix
The closed-form solutions for the in-plane and out-of-plane true

anomaly rate of change of relative distances are given by

x 0.µ/ j D cos µ
£
d1 j e C 2d2 j e

2 H .µ/
¤

C sin µ
£
2d2 j e

2 H 0.µ/
¤

C sin µ

µ
d2 j e

.1 C e cos µ/2
C d3 j

¶
¡ cos µ

µ
2d2 j e2 sin µ

.1 C e cos µ/3

¶

(A1)

y0.µ/ j D
µ

d4 j e sin µ

.1 C e cos µ/2
C 2d2 j eH 0.µ/

¶

C cos µ

µ
d3 j

.1 C e cos µ/
C d3 j

¶
C sin µ

µ
d3 j e sin µ

.1 C e cos µ /2

¶

¡ sin µ
£
d1 j e C 2d2 j e

2 H .µ /
¤

C cos µ
£
2d2 j e

2 H 0.µ/
¤

(A2)

z0.µ/ j D cos µ

µ
d5 j

.1 C e cos µ/

¶
C sinµ

µ
d5 j e sinµ

.1 C e cos µ/2

¶

¡ sin µ

µ
d6 j

.1 C e cos µ/

¶
C cos µ

µ
d6 j e sin µ

.1 C e cos µ/2

¶
(A3)

H 0.µ/ D
cos µ

.1 C e cos µ/3
(A4)

H 00.µ/ D
¡ sin µ.1 C e cos µ/ C 3e cos µ sin µ

.1 C e cos µ/4
(A5)

The initial and � nal states can then be written as a function of the
integration constants:

x 0.0/ D ed1 j ; x.0/ D ¡
e

.1 C e/2
d2 j ¡ d3 j (A6)

y0.0/ D
2e

.1 C e/2
d2 j C

.2 C e/

.1 C e/
d3 j

y.0/ D .1 C e/d1 j C
1

.1 C e/
d4 j (A7)

d1 j D
1

e
x 0.0/; d2 j D

.2 C e/.1 C e/2

e2
x.0/ C

.1 C e/3

e2
y0.0/

(A8)
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d3 j D ¡
.1 C e/

e
y0.0/ ¡

2.1 C e/

e
x.0/

d4 j D .1 C e/y.0/ ¡
.1 C e/2

e
x 0.0/ (A9)

x 0.2¼/ D ed1 j ¡
6e3¼.1 C e/

.1 ¡ e2/
5
2

d2 j

x.2¼/ D ¡
e

.1 C e/2
d2 j ¡ d3 j (A10)

y 0.2¼/ D
2e

.1 C e/2
d2 j C

.2 C e/

.1 C e/
d3 j (A11)

y.2¼/ D .1 C e/d1 j C
1

.1 C e/
d4 j ¡

6e2¼.1 C e/

.1 ¡ e2/
5
2

d2 j (A12)

With these expressions, the following presents the general form of
the monodromy matrix. The simpli� ed form is given in the paper as
Eq. (24),
2

6664

x 0.2¼/

x.2¼/

y0.2¼/

y.2¼/

3

7775

j

D

2

6664

w11 p11 w12 p22 w12 p23 0

0 w22 p22 C w23 p32 w22 p23 C w23 p33 0

0 w32 p22 C w33 p32 w32 p23 C w33 p33 0

w41 p11 C p41w44 w42 p22 w42 p23 w44 p44

3

7775

£

2

6664

x 0.0/

x.0/

y0.0/

y.0/

3

7775

j

(A13)

Evaluate each term in the matrix to get

w11 p11 D e

µ
1

e

¶
D 1

w12 p22 D
µ

¡
6e3¼.1 C e/

.1 ¡ e2/
5
2

¶µ
.2 C e/.1 C e/2

e2

¶

D ¡
6e¼.1 C e/

1
2 .2 C e/

.1 ¡ e/
5
2

w12 p23 D
µ

¡
6e3¼.1 C e/

.1 ¡ e2/
5
2

¶µ
.1 C e/3

e2

¶
D ¡

6e¼.1 C e/
3
2

.1 ¡ e/
5
2

w22 p22 C w23 p32 D
µ

¡
e

.1 C e/2

¶µ
.2 C e/.1 C e/2

e2

¶

C [¡1]

µ
¡2.1 C e/

e

¶
D 1

w22 p23 C w23 p33 D
µ

¡e

.1 C e/2

¶µ
.1 C e/3

e2

¶

C [¡1]

µ
¡.1 C e/

e

¶
D 0

w32 p22 C w33 p32 D
µ

2e

.1 C e/2

¶µ
.2 C e/.1 C e/2

e2

¶

C
µ

.2 C e/

.1 C e/

¶µ
¡2.1 C e/

e

¶
D 0

w32 p23 C w33 p33 D
µ

2e

.1 C e/2

¶µ
.1 C e/3

e2

¶
C

µ
.2 C e/

.1 C e/

¶

£
µ

¡.1 C e/

e

¶
D 1

w41 p11 C p41w44 D [.1 C e/]

µ
1

e

¶
C

µ
1

.1 C e/

¶

£
µ

¡.1 C e/2

e

¶
D 0

w42 p22 D
µ

¡
6e2¼.1 C e/

.1 ¡ e2/
5
2

¶µ
.2 C e/.1 C e/2

e2

¶

D ¡
6¼.2 C e/.1 C e/

1
2

.1 ¡ e/
5
2

w42 p23 D
µ

¡
6e2¼.1 C e/

.1 ¡ e2/
5
2

¶µ
.1 C e/3

e2

¶
D ¡

6¼.1 C e/
3
2

.1 ¡ e/
5
2

w44 p44 D
µ

1

.1 C e/

¶
[.1 C e/] D 1

Appendix B: Modeling Errors
Derivation of Equation (60)

For the second type of initialization error discussed in the
last part of the paper, it is assumed that ncirc D n. Then, because
Py.t/ D y0.µ/ Pµ.µ/, the correction of Py.0/ D ¡2nx.0/ actually results
in y0.0/ D ¡2x.0/n= Pµ.0/. Let ® D n= Pµ .0/, then this quantity can be
estimated as

® D
n

Pµ .0/
D

.1 ¡ e2/
3
2

.1 C e/2
D

.1 ¡ e/
3
2

.1 C e/
1
2

»D 1 ¡ 2e for e ¿ 1

(B1)

When Eq. (B1) is used and y 0.0/ is replaced with the new initializa-
tion y 0.0/ D ¡2®x.0/ in Eq. (56), the drift is

±y.2¼/drift
»D ¡

6¼e2.1 C e/

.1 ¡ e2/
5
2

£
µ

.2 C e/.1 C e/2

e2
¡

2.1 C e/3.1 ¡ 2e/

e2

¶
x.0/

D ¡
6¼.1 C e/3

.1 ¡ e2/
5
2

[.2 C e/ ¡ 2.1 C e/.1 ¡ 2e/]x.0/

»D ¡
6¼.1 C e/3

.1 ¡ e2/
5
2

3ex.0/ »D ¡18¼ex.0/ (B2)

Derivation of Equation (61)
Analyzing the difference of Eq. (30) and the circular orbit as-

sumption initialization Pycirc.0/ D ¡2nx.0/ gives the error in the ini-
tialization � ring

Pyecc.0/ ¡ Pycirc.0/ D ¡nx.0/

µ
.2 C e/

.1 C e/
1
2 .1 ¡ e/

3
2

¡ 2

¶

D ¡nx.0/

µ
.2 C e/ ¡ 2.1 C e/

1
2 .1 ¡ e/

3
2

.1 C e/
1
2 .1 ¡ e/

3
2

¶

»D ¡3nx.0/e for e ¿ 1 (B3)

Derivation of Equation (64)
To � nd y.¼/ resulting from the incorrect � ring at µ D 0, � rst

calculate the integration constants of the homogenous solutions.
Because d2 j D 0 (as a result of no differential energy errors) and
y0.0/ D 0 (initial condition), the homogenous solutions for y0.µ/ in
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Appendix A can be used to show that d3 j D 0. The homogenous
solutions for x 0.µ/ and y.µ/ with µ D 0 give

x 0.0/ D ed1 j ; y.0/ D .1 C e/d1 j C d4 j=.1 C e/ (B4)

which can be rewritten as

d1 j D x 0.0/=e; d4 j D y.0/.1 C e/ ¡ .1 C e/2[x 0.0/=e] (B5)

Finally, evaluating the homogenous solutions at µ D ¼ yields

x 0.¼/ D ¡ed1 j ; y.¼/ D .1 ¡ e/d1 j C d4 j =.1 ¡ e/ (B6)

Rewriting y.¼/ as a function of the initial conditions gives

y.¼/ D ¡x 0.0/[4=.1 ¡ e/] C y.0/[.1 C e/=.1 ¡ e/] (B7)

If the incorrect initialization was used (i.e., setting Px.0/ D ny.0/=2
instead of using the correct initialization, which is Px.0/ D
Pµ.0/y.0/=2), then Eq. (B7) takes the following form

y.¼/ D ¡y.0/
2n

Pµ.0/.1 ¡ e/
C y.0/

.1 C e/

.1 ¡ e/
D y.0/

.1 C e/ ¡ 2®

.1 ¡ e/

(B8)

where Px.t/ D x 0.µ/ Pµ.µ/; ® D n= Pµ.0/ »D 1 ¡ 2e was de� ned earlier.
The error associated with the incorrect initialization can then be
computed as

yerr.¼/ D y.¼ / ¡ ydes D y.0/
.1 C e/ ¡ 2®

.1 ¡ e/
¡ [¡y.0/]

D ¡y.0/
1 ¡ 5e

1 ¡ e
C y.0/

»D ¡y.0/.1 ¡ 4e/ C y.0/ D 4ey.0/ (B9)

The same procedure can be repeated to check for the error in the
semiminor axis x at µ D ¼=2 and 3¼=2

x.¼=2/ D d1 j e D ®[y.0/=2] »D .1 ¡ 2e/[y.0/=2] (B10)

xerr.¼=2/ D x.¼=2/ ¡ xdes.¼=2/ »D ¡ey.0/ (B11)

x.3¼=2/ D ¡d1 j e D ¡®[y.0/=2] »D ¡.1 ¡ 2e/[y.0/=2] (B12)

xerr.3¼=2/ D x.3¼=2/ ¡ xdes.3¼=2/ »D ey.0/ (B13)

where xdes.¼=2/ D y.0/=2 and xdes.3¼=2/ D ¡y.0/=2.

Derivation of Equation (65)
An analysis of the fuel can be done in the x direction. In this case,

the difference between the correct � ring and the � ring designed
using the circular reference orbit assumption is

Pxecc.0/ ¡ Pxcirc.0/ D
y.0/

2
[ Pµ.0/ ¡ n] D

y.0/n

2

µ
.1 C e/2

.1 ¡ e2/
3
2

¡ 1

¶

(B14)

D
y.0/n

2

µ
.1 C e/

1
2 ¡ .1 ¡ e/

3
2

.1 ¡ e/
3
2

¶
(B15)

»D
y.0/n

2
2e D y.0/ne for e ¿ 1 (B16)

Derivation of Equation (67)
Calculating the integration constant d5 j at µ D 0 from Eq. (A3)

and using Pz D z0 Pµ yields

d5 j D
Pz.0/.1 C e/

Pµ .0/
(B17)

By the use of the incorrect � ring Pz.0/ D c0n in d5 j , the homogenous
solution for z in Eq. (15) at µ D ¼=2 and 3¼=2 can be calculated as

z.¼=2/ D c0.1 C e/[n= Pµ.0/] »D c0.1 C e/.1 ¡ 2e/ »D c0.1 ¡ e/

(B18)

z.3¼=2/ D ¡c0.1 C e/[n= Pµ.0/] »D ¡c0.1 C e/.1 ¡ 2e/ »D ¡c0.1 ¡ e/

(B19)

and the error in the relative periodic motion is

zerr.¼=2/ D z.¼=2/ ¡ zdes.¼=2/ »D ¡ec0 (B20)

zerr.3¼=2/ D z.3¼=2/ ¡ zdes.3¼=2/ »D ec0 (B21)

where zdes.¼=2/ D c0 D ¡zdes.3¼=2/. If the correct � ring of
Pz.0/ D c0 Pµ .0/=.1 C e/ had been used, then the resulting motion
would be periodic motion with amplitude c0 .

Acknowledgments
Funded in part under U.S. Air Force Grant F49620-99-1-0095

[Marc Jacobs (U.S. Air Force Of� ce of Scienti� c Research) and
Rich Burns (U.S. Air Force Research Laboratory)] and NASA God-
dard Space Flight Center (GSFC) Grant NAG5-6233-0005 [John
Bristow, Jesse Leitner, and Frank Bauer (NASA GSFC)]. The au-
thors would like to thank the anonymous reviewers for their very
helpful comments.

References
1Bauer, F. H., Bristow, J., Folta, D., Hartman, K., Quinn, D., and How,

J. P., “Satellite Formation Flying Using an Innovative Autonomous Control
System (AUTOCON) Environment,” AIAA Paper 97-3821, Aug. 1997.

2Bauer, F. H., Hartman, K., and Lightsey, E. G., “Spaceborne GPS: Cur-
rent Status and Future Visions,” ION-GPS Conference, Inst. of Navigation,
Alexandria, VA, 1998, pp. 1493–1508.

3Bauer, F. H., Hartman, K., How, J. P., Bristow, J., Weidow, D., and
Busse, F., “Enabling Spacecraft Formation Flying Through Spaceborne GPS
and Enhanced Automation Technologies,” ION-GPS Conference, Inst. of
Navigation, Alexandria, VA, 1999, pp. 369–384.

4Das, A., and Cobb, R., “TechSat21—Space Missions Using Collaborat-
ing Constellations of Satellites,” 12th Annual Small Satellite Conference,
Paper SSC98-VI-1, AIAA, Reston, VA, Aug. 1998.

5Robertson, A., Inalhan, G., and How, J. P., “Spacecraft Formation Flying
Control Design for the Orion Mission,” Proceedings of the AIAA Guidance,
Navigation, and Control Conference, AIAA, Reston, VA, 1999, pp. 1562–

1575.
6Inalhan, G., Busse, F. D., and How, J. P., “Precise Formation Flying

Control of Multiple Spacecraft Using Carrier-Phase Differential GPS,” Pro-
ceedings of the AAS/AIAA Space� ight Mechanics Meeting, AIAA, Reston,
VA, 2000, pp. 151–165.

7Sedwick, R., Miller, D., and Kong, E., “Mitigation of Differential Pertur-
bations in Synthetic Apertures Comprised of Formation Flying Satellites,”
Advances in Astronautical Sciences: Space Flight Mechanics 1999, Vol. 102,
Pt. 1, Univelt, San Diego, CA, 1999, pp. 323–342.

8Schaub, H., and Alfriend, K., “J2 Invariant Relative Orbits for Spacecraft
Formations,”Flight Mechanics Symposium, Paper11, NASA GoddardSpace
Flight Center, Greenbelt , MD, May 1999.

9Lawden, D. F., Optimal Trajectories for Space Navigation, Butterworths,
London, 1963, pp. 79–86.

10Carter, T. E., and Humi, M., “Fuel-Optimal Rendezvous near a Point
in General Keplerian Orbit,” Journal of Guidance, Control, and Dynamics,
Vol. 10, No. 6, 1987, pp. 567–573.

11Carter, T. E., “New Form for the Optimal Rendezvous Equations near
a Keplerian Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 13,
No. 1, 1990, pp. 183–186.

12Sabol, C., Burns, R., and McLaughlin, C., “Satellite Formation Flying
Design and Evolution,” Journal of Spacecraf t and Rockets, Vol. 38, No. 2,
2001, pp. 270–278.

13Roger, A., and McInnes, C., “Safety Constrained Free-Flyer Path Plan-
ning at the International Space Station,” Journal of Guidance, Control, and
Dynamics, Vol. 23, No. 6, 2000, pp. 971–979.

14Melton, R., “Time-Explicit Representation of Relative Motion Between
Elliptical Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 23,
No. 4, 2000, pp. 604–610.

15Marec, J. P., Optimal Space Trajectories, Elsevier, New York, 1979, pp.
130–154.

16Bate, R. R., Mueller, D. D., and White, J. E., Fundamental s of Astro-
dynamics, Dover, New York, 1971, pp. 20, 25–33, 212–222, 396–412.

17Chobotov, V. A., Orbital Mechanics, 2nd ed., AIAA Educational Series,
AIAA, Reston, VA, 1996, pp. 155–158, 162–164, 168–181.

18Rugh, W. J., Linear System Theory, 2nd ed., Prentice–Hall, Upper Sad-
dle River, NJ, 1996, pp. 81–87.

19Hale, J. K., and Koc.ak, H., Dynamics and Bifurcation, Springer-Verlag,
New York, 1991, Chap. 11.

http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-4650^282001^2938:2L.270[aid=1898313]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^282000^2923:6L.971[aid=1590056]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^282000^2923:4L.604[aid=1526409]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-4650^282001^2938:2L.270[aid=1898313]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^282000^2923:6L.971[aid=1590056]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^282000^2923:4L.604[aid=1526409]

