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Proportional-Integral Controllers for Minimum-Phase
Nonaffine-in-control Systems

Justin Teo, Jonathan P. How, and Eugene Lavretsky

Abstract—We show that stabilizing tracking proportional-integral (PI)
controllers can be constructed for minimum-phase nonaffine-in-control
systems. The constructed PI controller is an equivalent realization of an
approximate dynamic inversion controller. This equivalence holds only
for the time response when applied to the unperturbed system. Even
when restricted to unperturbed minimum-phase linear time invariant
systems, their closed loop robustness properties differ. This shows that
in general, properties that do not define the equivalence relation for
systems/controllers are not preserved under such equivalence transfor-
mations.

Index Terms—proportional-integral control, nonaffine-in-control sys-
tems, nonlinear systems, feedback linearization.

I. INTRODUCTION

The proportional-integral (PI) controller is perhaps one of the most
utilized and important constructions available for control of a large
class of systems. In addition to its classical applications to linear time
invariant (LTI) systems, justifications for the use of PI controllers on
nonlinear systems have been furnished in [1]–[3], to name a few that
are most relevant to the present note. In [2], single-input-single-output
(SISO) affine-in-control nonlinear systems are considered. It was
shown that when the system is minimum-phase, an output-feedback
PI controller with a high-gain observer (termed universal integral
controller in [2]) can achieve asymptotic tracking of a sufficiently
smooth reference signal that approaches a constant limit. For multi-
input-multi-output (MIMO) nonaffine-in-control systems, [1] showed
that if the open-loop system is exponentially stable, a stabilizing
tracking PI controller can be constructed.

In this note, we will show that for SISO minimum-phase nonaffine-
in-control systems, a stabilizing tracking PI controller can be con-
structed. The extension to a (restricted) class of MIMO minimum-
phase nonaffine-in-control systems is presented in [4], [5]. The results
of this note complement [1], [2] by

1) extending the applicability of PI controllers to unstable
(minimum-phase) nonaffine-in-control systems,

2) showing that the constructed PI controller can be interpreted
as an exact realization of an approximate feedback linearizing
controller [6], and

3) showing that bounded tracking is achieved for reference signals
not necessarily approaching a constant limit.

Some practical examples of nonaffine-in-control systems include the
continuous stirred tank reactor [7], switched reluctance motors [8],
and some aircraft models [9].

The PI controller is derived from an approximate dynamic inversion
(ADI) controller proposed in [6] (see also [5]). The ADI control law,
as the name suggests, is an approximation of exact dynamic inversion
or feedback linearization [10]. Given a minimum-phase nonaffine-
in-control system, the ADI control law drives it towards a chosen
stable reference model. The control signal was defined as a solution
of “fast” dynamics, and Tikhonov’s Theorem [11, Theorem 11.2,
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pp. 439 – 440] from singular perturbation theory was invoked to
show that the control signal approaches the exact dynamic inversion
solution, and the system state approaches and maintains within an
arbitrarily small neighborhood of the reference model state, when
the controller dynamics are made sufficiently fast. In contrast to the
ADI control law, the derived PI controller is largely independent
of the system’s nonlinearities, rendering it relatively insensitive to
parametric uncertainties. However, when the controller have fast
dynamics as required of the ADI method, the resulting PI controller
is a high-gain controller with associated robustness problems [12].

A set of controllers can be considered equivalent when they all
satisfy some common properties. In [13, Section 5.4], two systems
are defined to be equivalent if and only if, to every initial condition
in either system, there corresponds a compatible initial condition
in the other system for which they produce the same output time
response for the same excitation. It is common practice to trans-
form a system into an equivalent one for analysis/design, and then
transform it into another equivalent form for implementation due to
convenience and/or necessity to maintain tractability. In the second
part of this note, we will show that robustness properties may not be
preserved under such equivalence transformations. In particular, the
equivalence between the ADI and PI controllers holds only for the
time response when applied to the exact system. Even when restricted
to unperturbed minimum-phase LTI systems, robustness properties
are not preserved. These results mirror those of [14], where an equiv-
alence class of controllers satisfying the same optimality criterion is
derived from a nominal optimal controller, and performance is not
preserved for all controllers from the same equivalence class under
some perturbations. Also, [15] has a similar notion of equivalent
feedback, although robustness properties among controllers in the
same equivalence class were not investigated. The main message of
the second part is thus that extra caution is due when performing such
transformations, and properties that do not define the equivalence
class (e.g. robustness properties of the closed-loop system for the
class of stabilizing controllers that achieve the same time response)
for a system cannot be assumed to hold under such equivalence
transformations.

II. EQUIVALENCE BETWEEN APPROXIMATE DYNAMIC

INVERSION AND PI CONTROL

In this section, we show that every ADI controller [6] admits
an equivalent PI controller realization. This means that a stabilizing
tracking PI controller exists for SISO minimum-phase nonaffine-in-
control systems with a constant well-defined relative degree, for suffi-
ciently smooth bounded reference signals not necessarily approaching
a constant limit. The extension to a restricted class of MIMO systems
is straightforward [4], [5]. First, we present the ADI method and its
main result in [6] (see also [5] for differences with [6]), with a minor
generalization.

A. Approximate Dynamic Inversion for Nonaffine-in-control SISO
Systems

Consider an n-th order SISO nonaffine-in-control system of (con-
stant and well-defined) relative degree ρ, expressed in normal form

ξ(ρ) = f(x, z, u), x(0) = x0,

ż = g(x, z, u), z(0) = z0,
(1)

defined for all (x, z, u) ∈ Dx×Dz×Du with Dx ⊂ Rρ, Dz ⊂ Rn−ρ
and Du ⊂ R being domains containing the origins. The (partial) state
x is defined as x = [ξ, ξ̇, ξ(2), . . . , ξ(ρ−1)]T, and ξ(q) denotes the q-
th time derivative of ξ. The state vector of the system is [xT, zT]T,
u is the control input, and f : Dx × Dz × Du → R, g : Dx ×
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Dz ×Du → Rn−ρ are continuously differentiable functions of their
arguments. To ensure that its relative degree is constant and well-
defined, assume that ∂f

∂u
is bounded away from zero for all (x, z, u) ∈

Dx×Dz×Du. That is, there exists b0 > 0 such that
∣∣ ∂f
∂u

∣∣ ≥ b0 for all
(x, z, u) ∈ Dx ×Dz ×Du. This implies that sgn

(
∂f
∂u

)
∈ {−1,+1}

is a constant, and that ψ : u 7→ f(x, z, u) is a bijection for every
fixed (x, z) ∈ Dx×Dz . Note that f need not be explicitly invertible
with respect to u.

The problem is to design a controller so that x tracks the state of
a chosen ρ-th order stable linear reference model

ξ(ρ)r + ar(ρ−1)ξ
(ρ−1)
r + · · ·+ ar1ξ̇r + ar0ξr = brr, (2)

where xr = [ξr, ξ̇r, ξ
(2)
r , . . . , ξ

(ρ−1)
r ]T ∈ Rρ is its state, xr(0) = xr0

is some chosen initial state, and r is a continuously differentiable
reference input signal with bounded time derivative ṙ. Stability of the
reference model requires that all roots of the characteristic equation
sρ + ar(ρ−1)s

ρ−1 + · · · + ar1s + ar0 = 0 lie in the open left half
complex plane, denoted by C−.

Define the tracking error ξe = ξ−ξr and error vector e = x−xr =
[ξe, ξ̇e, ξ

(2)
e , . . . , ξ

(ρ−1)
e ]T ∈ Rρ, and choose the desired stable error

dynamics

ξ(ρ)e + ae(ρ−1)ξ
(ρ−1)
e + · · ·+ ae1ξ̇e + ae0ξe = 0, (3)

with initial condition defined by e(0) = e0 = x0 − xr0. Similarly,
stability of the desired error dynamics requires that all roots of
sρ + ae(ρ−1)s

ρ−1 + · · · + ae1s + ae0 = 0 lie in C−. Observe that
in [6], aei was set equal to ari for i ∈ {0, 1, . . . , ρ − 1}. This is a
minor extension of [6] that allows the error dynamics to be specified
independently of the reference model dynamics.

For notational convenience in the sequel, define

ar = [ar0, ar1, . . . , ar(ρ−1)]
T,

ae = [ae0, ae1, . . . , ae(ρ−1)]
T,

α = sgn

(
∂f

∂u

)
.

As observed above, α ∈ {−1,+1} is a constant for all (x, z, u) ∈
Dx × Dz × Du. The open-loop (time-varying) error dynamics are
then given by the system

ξ(ρ)e = f(e+ xr(t), z, u) + aTr xr(t)− brr(t), e(0) = e0,

ż = g(e+ xr(t), z, u), z(0) = z0.
(4)

The ideal dynamic inversion control is found by solving

f(e+ xr(t), z, u) + aTr xr(t)− brr(t) = −aTe e (5)

for u, resulting in the exponentially stable closed-loop tracking error
dynamics (3). Since (5) cannot (in general) be solved explicitly for
u, the ADI controller [6]

εu̇ = −αf̃(t, e, z, u), u(0) = u0, (6)

where

f̃(t, e, z, u) = f(e+ xr(t), z, u) + aTr xr(t)− brr(t) + aTe e,

approximates the exact dynamic inversion solution via fast dynamics.
Let u = h(t, e, z) be an isolated root of f̃(t, e, z, u) = 0. In

accordance with the theory of singular perturbations [11, Chapter 11],
the reduced system for (4), (6), is

ξ(ρ)e = −aTe e, e(0) = e0,

ż = g(e+ xr(t), z, h(t, e, z)), z(0) = z0.

With v = u− h(t, e, z) and τ = t/ε, the boundary layer system is

dv

dτ
= −αf̃(t, e, z, v + h(t, e, z)). (7)

The main result of [6], adapted for the above extension and presented
in [5, Theorem 4], is the following.

Theorem 1 (Hovakimyan et al. [6, Theorem 2], [5, Theorem 4]):
Consider the system (4) and (6), and let u = h(t, e, z) be an isolated
root of f̃(t, e, z, u) = 0. Assume that the following conditions hold
for all

(t, e, z, u− h(t, e, z), ε) ∈ [0,∞)×De,z ×Dv × [0, ε0],

for some domains De,z ⊂ Rn and Dv ⊂ R which contain their
respective origins:

1) On any compact subset of De,z ×Dv , the functions f , g, their
first partial derivatives with respect to (x, z, u), and r(t), ṙ(t)
are continuous and bounded, h(t, e, z) and ∂f

∂u
(x, z, u) have

bounded first partial derivatives with respect to their arguments,
and ∂f

∂x
, ∂f
∂z

, ∂g
∂x

, ∂g
∂z

as functions of (e + xr(t), z, h(t, e, z)),
are Lipschitz in e and z uniformly in t.

2) The origin is an exponentially stable equilibrium of the system

ż = g(xr(t), z, h(t, 0, z)).

The map (e, z) 7→ g(e + xr(t), z, h(t, e, z)) is continuously
differentiable and Lipschitz in (e, z) uniformly in t.

3) (t, e, z) 7→
∣∣ ∂f
∂u

(e+ xr(t), z, h(t, e, z))
∣∣ is bounded from below

by some positive number for all (t, e, z) ∈ [0,∞)×De,z .
Then the origin of (7) is exponentially stable. Let Rv ⊂ Dv be the
region of attraction of the autonomous system

dv

dτ
= −αf̃(0, e0, z0, v + h(0, e0, z0)),

and Ωv be a compact subset of Rv . Then, for each compact subset
Ωe,z ⊂ De,z , there exists positive constants ε∗ and T such that for
all t > 0, (e0, z0) ∈ Ωe,z , u0 − h(0, e0, z0) ∈ Ωv , and ε ∈ (0, ε∗),
the system (1), (2), (6) has a unique solution x(t, ε), z(t, ε), xr(t),
u(t, ε) on [0,∞), and

x(t, ε)− xr(t) = O(ε)

holds uniformly for all t ∈ [T,∞).
Proof: See [5], [6].

Observe that bounded tracking is achieved even when the reference
signal r does not approach a constant limit. An extension of [6]
applicable to a larger class of MIMO nonaffine-in-control systems is
presented in [16], where the instantaneous control signal is obtained
as the minimizer of the discrepancy between the control signal and
the exact dynamic inversion solution in a least squares sense.

B. PI Controller for Nonaffine-in-control SISO Systems

The following is the key result which shows that a stabilizing
tracking PI controller exists for system (1).

Theorem 2: For every approximate dynamic inversion con-
troller (6), there exists a linear proportional-integral controller re-
alization

u(t) = −α
ε

(
ξ(ρ−1)
e (t) + aTe

∫ t

0

e(γ) dγ − ũ0

)
, (8)

where ũ0 = ξ
(ρ−1)
e (0) + αεu0.

Proof: Substituting the first equation of (1) into (6), we have

εu̇ = −α
(
ξ(ρ) + aTr xr − brr + aTe e

)
.

Substituting for ξ(ρ)r from (2) into the preceding yields

εu̇ = −α
(
ξ(ρ) − ξ(ρ)r + aTe e

)
= −α

(
ξ(ρ)e + aTe e

)
.

Taking the time integral and dividing by ε (> 0) on both sides, we
get (8) with ũ0 being the constant of integration. Finally, enforcing
u(0) = u0 in (6) yields ũ0 = ξ

(ρ−1)
e (0) + αεu0.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 6, JUNE 2010 1479

Observing that ξ(ρ−1)
e = [0, . . . , 0, 1]e, it can be seen that (8) is a

full state feedback PI controller acting on the tracking error and its
time derivatives and integrals (see also Fig. 2). Furthermore, observe
that when expressed in the error coordinates e, the PI controller is
not explicitly dependent on the reference model dynamics. Hence the
(exogenous) reference model (2) can be replaced by any stable signal
generator. Alternatively, if r is ρ+1 times continuously differentiable
with r(ρ+1) bounded, and all its time derivatives up to r(ρ) are
available for feedback, they can be used directly without a need for
any signal generator.

The significance of this result is threefold:
1) The PI controller allows a very simple exact realization of the

ADI control law. Furthermore, no feedback of z is required.
2) The PI controller is a linear realization of a (in general)

nonlinear control law.
3) The PI controller realization is independent of the nonlinear

function f(x, z, u) in (1), except for the sign of the control
effectiveness, sgn

(
∂f
∂u

)
.

Remark 1: Any nonaffine-in-control system whose state evolu-
tion is described by ordinary differential equations of the form
ẋ = f(x, u) can be transformed into an affine-in-control nonlinear
system by defining the extended system [17]

ẋ = f(x, v), v̇ = u,

with input u and auxiliary state v. Therefore, any results for affine-
in-control systems like [2] can be applied to this extended system.
However, this approach has some disadvantages as outlined in [18].
In particular, if the PI controller of [2] is designed for the extended
system, the resultant PI controller will be of a higher order than the
one presented herein. Furthermore, since (1) and (6) can be rewritten
in the form

ξ(ρ) = f(x, z, v),

ż = g(x, z, v),

v̇ = −α
ε
f̂(t, x, z, v),

where v is the auxiliary state, and

f̂(t, x, z, v) = f(x, z, v) + aTr xr(t)− brr(t) + aTe (x− xr(t)),

it can be seen that the ADI controller (6) can be interpreted as
a (high-gain) state feedback controller on the extended system.
However, using the ADI controller for the original system avoids
the undesirable high-gain control effects.

Remark 2: A similar result is presented in [3], where it was shown
that the constructed PI controller for a relative degree one, minimum-
phase affine-in-control nonlinear system is an approximate realization
of an exact feedback linearizing controller [10].

Here, we have shown by equivalence to the ADI controller [6],
that for SISO minimum-phase nonaffine-in-control systems of the
form (1), a stabilizing tracking PI controller exists. The extension to
a (restrictive) class of MIMO minimum-phase nonaffine-in-control
systems is straightforward [4], [5]. However, for the ADI controller
of [16], it is not known whether such PI realizations will exist in
general.

III. NONEQUIVALENCE IN PERTURBED SYSTEMS

Consider the scenario where the ADI controller is designed for a
nominal system, but applied to a perturbed system. It is clear that
when the ADI controller and its induced PI controller are applied
to the exact system (1), they will produce identical time responses
for the same excitation and compatible initial conditions. As will be
shown in Section IV, even when restricted to unperturbed minimum-
phase LTI systems, this equivalence holds only for the time response

ξ
(ρ)

= fp(x, z, u)

ż = g(x, z, u)

System

e−sT

Delay
u

x

z

di

dxo

dzo

− α
εs

uADI
f(x̃, z̃, uADI)

z̃

x̃

aTe
ẽ

ẋr = Arxr + Brr

−
xr

h̃
r

ADI Controller
Fig. 1. Block diagram of perturbed open loop system driven by ADI
controller.

ξ
(ρ)

= fp(x, z, u)

ż = g(x, z, u)

System

e−sT

Delay
u

x

z

di

dxo

dzo

z̃

−α
ε

uPI aTe
s

cT

ẽ

ẋr = Arxr + Brr

xr
−

rPI Controller
Fig. 2. Block diagram of perturbed open loop system driven by induced PI
controller.

and not, in particular, to robustness properties. Equivalence in the
time response also does not hold when these controllers are applied
to a perturbed system. In particular, we show in this section that the
equivalence between the ADI controller and its induced PI controller
is lost when the system is subjected to

1) noise/disturbances at plant input/output,
2) perturbations of nonlinear function f(x, z, u) in (1), or
3) time delays at plant input/output.

The same conclusions hold for the MIMO case.
Let the relations between the input/output noise/disturbances and

the open loop system (1) be defined by

u(t) = uc(t− T ) + di(t− T ), x̃ = x+ dxo, z̃ = z + dzo, (9)

where T ≥ 0 is the delay interval, uc, di are the commanded input
and input noise/disturbance respectively, x̃, z̃ are the measurements,
and dxo, dzo are output noise/disturbances acting on x, z respectively.
Let ẋr = Arxr + Brr, [h̃, xTr ]T = Crxr + Drr, be a state space
realization of the reference model (2), where h̃(t) = aTr xr(t) −
brr(t). Additionally, define the selector vector

c = [0, . . . , 0, 1]T ∈ Rρ.

When the open loop system (1) is subjected to a time delay of
T at the input, input/output noise/disturbances defined by (9), and
perturbations of f to fp, the block diagrams of the ADI (uc ≡ uADI )
and PI (uc ≡ uPI ) controlled systems are shown in Fig. 1 and 2
respectively. Here, e−sT represents the delay by T seconds operator
and 1

s
represents the time integral operator.

A. Disturbances at Plant Input/Output

Consider the system defined by (1) and (9) with T = 0. Define
signal h as

h = aTr xr − brr + aTe (e+ dxo).
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The ADI controller applied to this system is then

εu̇ADI = −α
(
f(x+ dxo, z + dzo, uADI) + h

)
.

The PI controller applied to the same system is

uPI(t) = −α
ε

(
ξ(ρ−1)
e (t) + cTdxo(t)− ũ0

+ aTe

∫ t

0

e(γ) + dxo(γ) dγ

)
,

which, assuming that dxo(t) is differentiable, can be shown to be
equivalent to

εu̇PI = −α
(
f(x, z, uPI + di) + cTḋxo + h

)
.

Clearly, the ADI and PI controllers are equivalent (in general) only
when di, dxo and dzo are identically zero.

Remark 3: Note that the above expressions for the ADI and PI
controllers can be written in integral form without having to assume
differentiability of dxo(t).

B. Delay-free Perturbation of System

If the system to be controlled is defined by (1), but with f(x, z, u)
perturbed to fp(x, z, u), the ADI controller remains unaltered as (6),
rewritten here with symbol uADI as

εu̇ADI = −α
(
f(x, z, uADI) + aTr xr − brr + aTe e

)
.

In contrast, the PI controller can be shown to be equivalent to

εu̇PI = −α
(
fp(x, z, uPI) + aTr xr − brr + aTe e

)
,

the difference being the nonlinear function fp(x, z, uPI). The inde-
pendence of the PI controller from the nonlinear function f(x, z, u)
renders it relatively insensitive to such delay-free perturbations. It is
clear that in the presence of such perturbations, Theorem 1 applies
to the PI controller unaltered. This shows that for all delay-free
perturbations described by fp(x, z, u) satisfying the hypotheses of
Theorem 1 and such that sgn

(
∂f
∂u

)
= sgn

( ∂fp
∂u

)
, there exists a

sufficiently small positive ε for which the PI controller stabilizes
the system. The same do not hold for the ADI controller under such
perturbations, as demonstrated by the following example.

Example 1: Consider the second order minimum-phase LTI sys-
tem

ξ(2) + a1ξ̇ + a0ξ = (1 + δ)u,

where δ (> −1 to ensure that sgn
(
∂f
∂u

)
= +1 is constant) is a small

unknown constant perturbation, nominally 0. Let the ADI controller
be designed for δ = 0, with ae = [ae0, ae1]T, ae0, ae1 ∈ (0,∞). It
can be shown that the characteristic polynomial of the closed loop
system is

pADI(s) = εs3 + (1 + εa1)s2 + ((1 + δ)ae1 + εa0 − δa1)s

+ ((1 + δ)ae0 − δa0).

Consider the case where ae0 and ae1 are fixed to satisfy some desired
stable error dynamics, and the system coefficients satisfy a0 � −1 <
0, a1 � ae1 > 0. For example, this can represent an unstable first
order system 1

s−1
in series with a stable first order system with fast

dynamics 1
s+a

, where a� 1. Then for stability, we require at least

−
∣∣∣∣ ae0
a0 − ae0

∣∣∣∣ < δ <

∣∣∣∣ae1 + εa0
a1 − ae1

∣∣∣∣ .
For sufficiently large a0 � −1 and a1 � 1, a small deviation of
δ from zero in either direction induces instability regardless of the
choice of ε.

It can be shown that the characteristic polynomial of the closed
loop system controlled by the induced PI controller is

pPI(s) = εs3 + (1 + δ+ εa1)s2 + ((1 + δ)ae1 + εa0)s+ (1 + δ)ae0,

so that when ε is small enough, ae0 and ae1 dominates the coefficients
of the characteristic polynomial.

Remark 4: Theorem 1 states that for a fixed ae, there is a suffi-
ciently small ε to obtain a stabilizing ADI design. Example 1 only
illustrates that Theorem 1 does not apply to the ADI controller under
perturbations of f(x, z, u). It does not imply that a stabilizing ADI
controller does not exist, but only that ε cannot be independent of
ae under such perturbations. Observe also that when δ ≤ −1, the
key assumption that sgn

(
∂f
∂u

)
is a constant is violated, so that in this

case, the PI controller also fails to stabilize the system.

C. A Single Time Delay at Plant Input/Output

Here, we consider the case where there is a single delay present
at the plant input/output. Since by definition, time-invariant systems
commute with the delay operator [13, Definition 5.2.2, pp. 150], and
system (1) is indeed time-invariant [13, pp. 150] [19, Proposition 1],
it suffices to consider the case where the single delay appears at
the input, as illustrated in Fig. 1 and 2, with fp = f , di ≡ 0,
dxo ≡ 0, and dzo ≡ 0. To emphasize the presence of the delay in
the subsequent expressions, we refer this input delay to the output
(permissible due to commutativity of time-invariant systems and the
delay operator), so that in place of (9), we have

u(t) = uc(t), x̃(t) = x(t− T ), z̃(t) = z(t− T ). (10)

The system to be controlled is therefore defined by (1) and (10). With

h(t) = aTr xr(t)− brr(t) + aTe
(
x(t− T )− xr(t)

)
,

the ADI controller takes the form (see Fig. 1 for illustration of how
uADI enters f )

εu̇ADI(t) = −α
(
f(x(t− T ), z(t− T ), uADI(t)) + h(t)

)
.

In contrast, the PI controller can be shown to be equivalent to

εu̇PI(t) = −α
(
cTx̃(t)− ξ(ρ)r (t) + aTe (x̃(t)− xr(t))

)
,

= −α
(
ξ(ρ)(t− T ) + aTr xr(t)− brr(t)

+ aTe (x(t− T )− xr(t))
)
,

= −α
(
f(x(t− T ), z(t− T ), uPI(t− T )) + h(t))

)
,

the difference being that uPI(t) enters the nonlinear function f
delayed by T .

Remark 5: The above only shows that the ADI and PI solutions
differ when a single delay is introduced at the plant input/output,
without regard for the stability of the delayed closed-loop system.
Work is underway to study closed-loop stability and tracking perfor-
mance for systems with time delays.

IV. LINEAR TIME-INVARIANT SYSTEMS

Here, we use well established linear system techniques to compare
some robustness properties of the closed loop system controlled by
the ADI controller and its induced PI equivalent when the system is
minimum-phase and LTI.

Consider the class of ρ-th order SISO minimum-phase LTI systems
described by

ξ(ρ) + aρ−1ξ
(ρ−1) + · · ·+ a1ξ̇ + a0ξ = bu, (11)

where b is a constant scalar satisfying |b| ≥ b0 > 0, x =
[ξ, ξ̇, . . . , ξ(ρ−1)]T and u are the system state and control input
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respectively. The PI controller (8) applied to system (11) can be
written as

uPI(t) = − sgn(b)

ε

(
ξ(ρ−1)(t)− ξ(ρ−1)

r (t)

+ aTe

∫ t

0

x(γ)− xr(γ) dγ − ũ0

)
, (12)

where ξr and xr are defined in (2). The transfer functions of (11)
and (12) are then

x(s) =
b

sρ + aρ−1sρ−1 + · · ·+ a1s+ a0
[1, s, . . . , sρ−1]Tu(s),

uPI(s) = − sgn(b)

εs
[sρ + ae0, ae1, . . . , ae(ρ−1)](x(s)− xr(s)),

respectively. Breaking the loop at the input to the system, the input
loop transfer function is then

LPI(s) =
|b|
εs

sρ + ae(ρ−1)s
ρ−1 + · · ·+ ae1s+ ae0

sρ + aρ−1sρ−1 + · · ·+ a1s+ a0
. (13)

The ADI controller (6) applied to the same system is

εu̇ADI = − sgn(b)
(

(aTe − aT)x+ bu+ (aTr − aTe )xr − brr
)
,

where a = [a0, a1, . . . , aρ−1]T. Its transfer function and input loop
transfer function are then

uADI(s) = − sgn(b)

εs+ |b|
(
(aTe − aT)x(s)

+ (aTr − aTe )xr(s)− brr(s)
)
,

LADI(s) =
|b|

εs+ |b|
(aTe − aT)[1, s, . . . , sρ−1]T

sρ + aρ−1sρ−1 + · · ·+ a1s+ a0
, (14)

respectively. The corresponding input sensitivity functions are

SPI(s) = (1 + LPI(s))
−1, SADI(s) = (1 + LADI(s))

−1.

A. Input Sensitivity Function

First, we show that the H∞ norm of the input sensitivity function
of the closed-loop system controlled by the induced PI controller (8)
is strictly less than the H∞ norm of the input sensitivity function of
the system controlled by the ADI controller (6). For the following
result, recall the role of ε∗ in Theorem 1, which is the upper bound
of ε in (6) to obtain a stabilizing ADI controller.

Proposition 1: For any ε ∈ (0,∞),

SPI(s) =
εs

εs+ |b|SADI(s). (15)

For any ε ∈ (0, ε∗), where ε∗ is defined in Theorem 1,

‖SPI(s)‖∞ < ‖SADI(s)‖∞. (16)

Proof: For ease of polynomial manipulations, define s̃ =
[1, s, . . . , sρ−1]T. Then from (13) and (14), we have

LPI(s) =
|b|
(
sρ + aTe s̃

)
εs (sρ + aTs̃)

, LADI(s) =
|b|
(
aTe − aT

)
s̃

(εs+ |b|) (sρ + aTs̃)
,

which gives

1 + LPI(s) =
εsρ+1 + |b|sρ +

(
εsaT + |b|aTe

)
s̃

εs (sρ + aTs̃)
.

From above, we have

1 + LADI(s) =
εsρ+1 + |b|sρ +

(
εsaT + |b|aTe

)
s̃

(εs+ |b|) (sρ + aTs̃)
,

=
εs

εs+ |b| (1 + LPI(s)) ,

which proves (15) for all ε ∈ (0,∞).

Next, observe from Theorem 1 that any choice of ε ∈ (0, ε∗) results
in a stable closed loop system. Then ‖SPI(s)‖∞ and ‖SADI(s)‖∞
are both finite. Let |SPI(jω)| attain its maximum at ω0, so that
‖SPI(s)‖∞ = |SPI(jω0)|. From (15), at frequency ω0, we have

|SADI(jω0)| =
∣∣∣∣1− j |b|εω0

∣∣∣∣ |SPI(jω0)| > ‖SPI(s)‖∞.

Since ‖SADI(s)‖∞ ≥ |SADI(jω0)|, the second conclusion (16)
follows.

Observe that the H∞ norm of the sensitivity function is one mea-
sure of robustness, the reciprocal of which is the shortest Euclidean
distance in the complex plane of the Nyquist plot from the critical
point −1 + j0. From (16), we see that the shortest distance between
the Nyquist plot of LPI(s) and the critical point is always larger
than that of LADI(s), which imply that the PI controlled system
can tolerate larger gain and/or phase perturbations to LPI(s) while
maintaining stability compared to the ADI controlled system. Clearly,
in terms of the input sensitivity function, the PI controller has better
robustness properties.

B. Time Delay Margin

Here, we show that as ε → 0, the time delay margin of the PI
controlled system, DMPI(ε), approaches zero, while for the ADI
controlled system, the time delay margin is finite and bounded away
from zero. The main disadvantage of the PI controlled system is that
as ε → 0, the gain crossover frequency of its open loop transfer
function approaches infinity, so that even with finite positive phase
margin, its time delay margin vanish in the limit.

For a stable LTI system with loop transfer function L(s), we use
the definition of the time delay margin [20]

DM = inf { θm/ωc ∈ [0,∞) | ∃ωc ∈ (0,∞), |L(jωc)| = 1,

θm = (∠L(jωc) mod 2π)− π },

where θm and ωc are the phase margin and gain crossover frequency
of L(s) respectively, with the usual convention that the infimum of
an empty set is +∞. It is a measure of the amount of time delay
that an LTI system can tolerate, beyond which the closed loop system
destabilizes, and is another measure of system robustness of practical
importance.

Proposition 2: The time delay margin of the closed loop system
stabilized by the PI controller (8) satisfy

lim
ε→0

DMPI(ε) = 0.

Proof: Since the closed loop system is stable by assumption,
the phase margin satisfy θm ∈ [0, π) if there exists at least one real
ωc such that |LPI(jωc)| = 1, ie., that there is at least one gain
crossover point. Hence it is sufficient to show that as ε → 0, there
exists a solution ωc ∈ (0,∞) satisfying |LPI(jωc)| = 1 such that
ωc →∞.

From (13), it can be seen that LPI(s) is strictly proper and has a
pole at s = 0. Therefore, we have

lim
ω→∞

|LPI(jω)| = 0, lim
ω→0
|LPI(jω)| =∞.

By the continuity of |LPI(jω)| with ω, there must exist a real
ωc(ε) ∈ (0,∞) (depending on ε) that satisfy

|LPI(jωc(ε))| =
|b|

εωc(ε)

|p(jωc(ε))|
|q(jωc(ε))|

= 1, ∀ε ∈ [0,∞),

where p(s) = sρ + ae(ρ−1)s
ρ−1 + · · · + ae1s + ae0 and q(s) =

sρ+aρ−1s
ρ−1 + · · ·+a1s+a0. Rearranging terms and taking limits

yields

lim
ε→0

ωc(ε) = lim
ε→0

|b|
ε

|p(jωc(ε))|
|q(jωc(ε))|

. (17)
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Since p(s) is the characteristic polynomial of the stable desired error
dynamics (3), all roots of p(s) = 0 have negative real parts, so that
none lies on the jω axis and for all ω ∈ R, |p(jω)| 6= 0. Hence
|p(jωc(ε))| 6= 0 for all ε ∈ [0,∞). Since p(s) and q(s) are of
the same order, we have |q(jωc(ε))||p(jωc(ε))| < ∞ for all ε ∈ [0,∞). Then
from (17), we have the desired conclusion limε→0 ωc(ε) =∞.

This shows that there is a practical lower bound of ε when
implementing the equivalent PI controller. The following shows a
key advantage of the ADI controller as ε→ 0.

Proposition 3: There exists a τ > 0 such that the time delay
margin of the closed loop system stabilized by the ADI controller (6)
satisfy

lim
ε→0

DMADI(ε) ≥ τ > 0. (18)

Proof: From (14), we have

L̃ADI(s) := lim
ε→0

LADI(s) =
(aTe − aT)[1, s, . . . , sρ−1]T

sρ + aT[1, s, . . . , sρ−1]T
,

which determines limε→0DMADI(ε). Observe that (18) will not
hold only if there is a gain crossover point of L̃ADI(s) for which
the phase margin satisfies θm = 0, or for which the gain crossover
frequency satisfies ωc → ∞. When the phase margin is zero, we
have L̃ADI(s) = −1, giving

sρ + aTe [1, s, . . . , sρ−1]T = 0, (19)

for s = jωc, ωc ∈ R. Since this is the characteristic equation
of the chosen stable error dynamics, no roots of (19) can lie on
the jω axis so that the phase margin cannot be zero. Finally,
since L̃ADI(s) is strictly proper, all gain crossover frequencies ωc
satisfying |L̃ADI(jωc)| = 1 must be finite.

Clearly, the ADI controller has better tolerance of time delays as
ε → 0, which is necessary to achieve a good approximation of the
exact dynamic inversion solution.

C. Comment on Similarity Transformations for LTI Systems

The results above show that not all transformations of a sys-
tem/controller to an equivalent realization that preserves its time
response do indeed preserve its closed-loop robustness properties.
However, it can be easily shown that the familiar similarity trans-
formations well-known for LTI systems indeed preserve the system’s
transfer function, and hence its frequency domain closed-loop robust-
ness properties. In the equivalence transformation between the ADI
and PI controllers, their transfer functions differ, which is the cause
of the disparities.

V. CONCLUSIONS

Through equivalence with the approximate dynamic inversion
(ADI) method, it was shown that a stabilizing tracking PI controller
exists for minimum-phase nonaffine-in-control systems. This com-
plements existing results on PI control of nonlinear systems, and
shows that the class of SISO nonlinear systems for which stabilizing
PI controllers have yet to be found (if they exist), is the class
of nonminimum-phase nonlinear systems that are not exponentially
stable.

The equivalence between the ADI and induced PI controller
holds only for the time response when applied to the unperturbed
system. Even when restricted to minimum-phase unperturbed LTI
systems, they differ in key robustness properties. The choice between
implementing the ADI controller or its induced PI equivalent lies in
whether a sufficiently accurate model of the system is available, or
whether time delays are the major limitations in the system. When
knowledge of the system is poor, the PI controller would be preferred.

When time delays are dominant, the ADI controller is preferable. It
would be interesting to see if these two equivalent controllers can be
combined in some ways to obtain a design that achieves the strengths
of each, or allows the trading off of one aspect for another.

These results show that in general, for controllers/systems that
are equivalent in some sense, properties that do not define the
equivalence relation cannot be assumed to hold under such equiv-
alence transformations. In particular, controllers achieving the same
time response cannot be assumed to achieve the same closed loop
robustness properties.
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