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I. ADDITIONAL MATERIAL

In this addition to the regular paper, we derive the required
derivatives required to implement the informative prior from
a simulator in P1Lco [1]. First, for completeness, we repeat
the derivation of the mean, covariance, and input-output
covariance of the predictive mean of a Gaussian process (GP)
when the prior mean is a radial basis function (RBF) net-
work. Then, we detail the partial derivatives of the predictive
distribution with respect to the input distribution.

A. Predictive Distribution

Following the outline of the derivations in [1] and [2] the
predictive mean of uncertain input x, ~ N (u,X) is given
by

o = Eg, p ff (2
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X)B + m(z.)). (1)

We assume the prior mean function m(x.,) is the mean of a
GP that is trained using data from a simulator. Thus,

m(z.) =k (93*’ p)ﬁp

where {Xp, Yp) are the simulated data, 3, = (K, +

o2 no )™ Yyp — m(Xp)), Kp = kp(Xp, Xp), and o2 n, is the
noise variance parameter of the simulated data. Note that we
assume that the prior mean is trained using a zero-prior GP.
Substituting the form of the mean function into Eq. (1)) yields

pe=B"q+ Bl q, 2)

where g; = o?[SAT +1|7 Y2 exp(— 2T (S+A)~1y;) with
v; = x; — . The corresponding prior terms are similar with
@y, = o2SAST + 1172 exp(—vl (S + Ap)'vp,) and
Vp, = Tp, — W

Multi-output regression problems can be solved by train-
ing a separate GP for each output dimension. When the
inputs are uncertain, these output dimensions covary. We now
compute the covariance for different output dimensions a and
b as

Cova, slfa(@e), fo(@:)] = Ea, [Covy[fa(@.), fo(2)]]

+ Eg, [Ef[fa(z)lEs[fo(.)]]

= Eo. [Ef[fa(@)]|Ea. [Ef[fo(2.)]]. (3)
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As noted in [2], due to the independence assumptions of
the GPs, the first term in Eq. is zero when a # b. Also,
for a given output dimension, Cov[fq(x.), fo(x+)] does
not depend on the prior mean function. Therefore, using the
results of [1], the first term in Eq. (3) becomes
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where d,p is 1 when a = b and 0 otherwise, and
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The third term in Eq. () is computed using Eq. () as
B, By fa(@a)|[Ea. [EsLfo ()] =
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Finally, we compute the second term in Eq. (3) as
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As above, we will compute each term separately. Using
Eq. (3)), the first term in Eq. (7) becomes
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Similarly, the second term in Eq. is
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where (), is defined analogously to Eq. (3) but using the
prior rather than the current data. The third term in Eq.
is
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where pQ is defined as
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The forth term in Eq. (7)) is analogously defined as BZQP B
where
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Combining Eq. {@)-(I2) we obtain the covariance for an
uncertain input with multiple outputs. Writing this covariance
element-wise we obtain
oo = San(ag — (Ko + 02, 1)'Q)) + B, QB+
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T T T T
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The final derivation needed for propagating uncertain in-
puts through the GP transition model in the PILCO algorithm
is the covariance between the uncertain test input x, ~

N(w, ) and the predicted output f(x.) ~ N (ps, X4). This
covariance is calculated as
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Here we have separated the input-output covariance into a
part that comes from the current data and a part that comes
from the prior data. Therefore, we can directly apply the
results from [1] to obtain
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Note that in the derivation above we do not assume that
there are the same number of data points in the prior GP and

the current GP. Thus, the matrices T’Q and Q” need not be
square.

B. Partial Derivatives

Given the predictive distribution N (14, X4) from Sec-
tion [[-Al we first compute the partial derivative of the
predictive mean p, with respect to the input mean p. Using
the mean derived in Eq. (2) we get
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The derivative of the predictive mean with respect to the
input covariance is written as

np

Z 528 > i o,

8,u*

(16)

where, as in Eq. (I5), the derivative consists of two distinct
parts, one from the current data and one from the prior data.
Using results from [1], we obtain
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where, for D input dimensions and E output dimensions and
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and the corresponding prior term
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Next, we derive the partial derivatives of the predictive
covariance 3, with respect to the input mean and covariance.
We take these derivatives element-wise for output dimensions
a and b using Eq. (13). For the derivative with respect to the



input mean we get
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where, from [1],
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and similarly
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Note that g and 9> are given in Eq. (T3).

The derivative of the predictive covariance with respect to
the input covariance is
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where, from [1],
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As before, the terms containing the prior data are similar as
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Note that 52 and % are given in Eq. (7).

The final derlvatlves are the partial derivatives of the
input-output covariance with respect to the input mean and
covariance. From Eq. (I4) we see that ¥, ¢, consists of two
distinct but similar parts, one from the current data and one




from the prior data. Thus, applying results from [1], we get
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where (X4 A)~1 /0% and (X +A,,) 1 /0% are defined in
Eq. (I8) and Eq. (19), respectively.

This concludes the derivation of the partial derivatives
needed to implement PILCO with a prior mean function that
is an RBF network.
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