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Abstract
This paper addresses the problem of cooperative path
planning for a fleet of UAVs. The paths are optimized
to account for uncertainty/adversaries in the environ-
ment by modeling the probability of UAV loss. The
approach extends prior work by coupling the failure
probabilities for each UAV to the selected missions for
all other UAVs. In order to maximize the expected mis-
sion score, this stochastic formulation designs coordina-
tion plans that optimally exploit the coupling effects of
cooperation between UAVs to improve survival proba-
bilities. This allocation is shown to recover real-world
air operations planning strategies, and to provide sig-
nificant improvements over approaches that do not cor-
rectly account for UAV attrition. The algorithm is im-
plemented in an approximate decomposition approach
that uses straight-line paths to estimate the time-of-
flight and risk for each mission. The task allocation
for the UAVs is then posed as a mixed-integer linear
program (MILP) that can be solved using CPLEX.

1 Introduction
The capabilities and roles of UAVs are evolving and
require new concepts for their control[1, 2]. For exam-
ple, today’s UAVs typically require several operators,
but future UAVs will be designed to make tactical de-
cisions autonomously and will be integrated into teams
that cooperate to achieve high-level goals, thereby al-
lowing one operator to control a fleet of UAVs. New
methods in planning and execution are required to co-
ordinate the operation of these fleets.

Real-world air operations planners employ cooperation
between aircraft in order to manage the risk of attrition.
Missions are scheduled so that one group of aircraft
opens a corridor through anti-aircraft defenses before a
follow-on group attacks higher value targets, preserving
their survival. When each UAV can perform multiple
functions (e.g., both destroy anti-aircraft defenses and
attack high value targets) it is very challenging to plan
missions to exploit the integrated capabilities of the
team. Note that cooperation is not just desirable; it is
crucial for designing successful missions in heavily de-
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fended environments. A successful method of perform-
ing the allocation cannot simply assume the mission
will always be executed as designed, given an adver-
sary in the environment who is actively attempting to
cause failure. Simulations are presented to show that
ignoring the probability of UAV loss results in mission
plans that are quite likely to fail. Furthermore, tech-
niques that model this probability [8, 9], but ignore its
coupling to each UAV’s mission can result in very poor
performance of the fleet.

Clearly, a UAV mission planning formulation must rec-
ognize the importance of managing UAV attribution,
and have the capability to use the same strategies as
real-world air operations planners. The new formu-
lation in this paper approaches this by capturing not
only the value of the waypoints that each UAV visits
and of returning the UAV safely to its base, but also
by capturing the probability of these events. In or-
der to maximize mission score as an expectation, this
stochastic formulation designs coordination plans that
optimally exploit the coupling effects of cooperation be-
tween UAVs to improve survival probabilities. This
allocation is shown to recover planning strategies for
air operations and to provide significant improvements
over prior approaches [8, 9]. The paper briefly presents
the decomposition method for solving the UAV coordi-
nation and control problem. It is then shown how to
extend that formulation to capture the stochastic ef-
fects of the environment. Three solution methods are
discussed and then compared on a simulation example.

The optimal fleet coordination problem includes team
composition and goal assignment, resource allocation,
and trajectory optimization. These are complicated
optimization problems for scenarios with many UAVs,
obstacles, and targets. Furthermore, these problems
are strongly coupled, and optimal coordination plans
cannot be achieved if this coupling is ignored [4, 5].
Figure 1 shows an approximate method for solving the
UAV coordination and control problems, which offers
much faster solution times, but could yield sub-optimal
results [4]. The cost function used is the overall mis-
sion completion time plus a small weighting on the in-
dividual UAV finishing times. The costs are estimated
based on the finishing times found using straight-line
path approximations. Note that significant pruning of
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Fig.1: Steps in decomposition algorithm [4].

the possible mission scenarios can be performed at sev-
eral stages of the algorithm to reduce the size of the
task optimization problem.

With these approximate finishing times available, the
task assignment problem can be performed to minimize
the approximate cost, which is posed as a MILP opti-
mization and solved using CPLEX. The objective is to
assign a permutation to each UAV that is combined
into the mission plan such that the cost of the mission
is minimized and the waypoints visited (of NW ) meet
the constraints. Defining t̄ = maxp∈V tp, the problem
is given by

min J1 = t̄ +
α

NV

∑

j∈M
Cjxj (1)

s.t. ∀i ∈ W :
∑

j∈M
Vijxj = 1, ∀p ∈ V :

∑

j∈Mp

xj = 1

where V = {1, . . . , NV } and NV is the number of UAVs,
M = {1, . . . , NM} is the set of all permutations and
Mp ⊆ M are the permutations that involve UAV p,
W = {1, . . . , NW }, Vij = 1 if waypoint i is visited on
the jth permutation and 0 otherwise, and Cj is the
cost (time) associated with the jth permutation. The
binary decision variable xj = 1 if permutation j is se-
lected, and 0 otherwise. The first constraint enforces
that waypoint i is visited once. The second constraint
prevents more than one permutation being assigned to
each UAV. Note that relative timing constraints can
also be included to enforce time intervals between the
various events/visits [4]. The final step in the algo-
rithm uses receding horizon [7] or fixed-assignment [5, 6]
MILP methods to plan detailed trajectory commands
for each UAV while accounting for the dynamics and
inter-vehicle collision avoidance.

2 Planning and Re-planning Algorithms
The task allocation problem in the previous section is
used to assign a sub-team of UAVs to visit a set of
waypoints based on the information (UAV states, way-
point locations, and obstacles) known at the beginning
of the mission. However, throughout the execution of
the mission the environment and fleet can (and most

likely will) change. As a result, the optimal allocation
of the tasks amongst the UAVs in the fleet could be dra-
matically altered. Note that if the problem size is suf-
ficiently small, it would be possible to perform a com-
plete re-calculation of the task allocation problem using
a new set of costs based on the updated environment.
However, for larger problems it might be necessary to
re-solve smaller parts of the allocation problem. Two
smaller problems are presented in this section. One is a
local repair where only one UAV assignment is altered.
Another is a sub-team allocation problem where only
those “directly influenced” by the change in environ-
ment are re-assigned.

2.1 Addition of Waypoint
As the mission is executed, it is possible that further
reconnaissance will identify a new waypoint. In the lo-
cal repair method the cost of adding the new waypoint
to each UAV is determined using the UAV’s current
state, the remaining assigned waypoints from the orig-
inal problem, and the new waypoint. The assignment
of this waypoint that results in the smallest increase in
the cost function is then chosen. The local repair can
be solved very quickly, but it is a sub-optimal solution
because it does not allow the UAVs to trade previously
assigned waypoints.

A sub-team problem can be formulated which only con-
siders those UAVs capable of visiting the new waypoint.
These UAVs, their previously assigned waypoints, and
the new waypoint are then considered as a smaller task
allocation problem. This allows any waypoints within
this group to be traded amongst the UAVs and avoids
many of the limitations of the local repair method, but
it is still sub-optimal. The optimal solution can be ob-
tained by solving full re-allocation problem, but this
optimization takes longer to compute.

2.2 Loss of UAV
Another possible change is a loss of a UAV in a fleet.
In this case the waypoints assigned to that UAV must
be re-assigned across the fleet. The reallocation can be
formed through a local repair, sub-team re-allocation,
or full re-allocation, as described above.

2.3 Addition/Removal of Obstacle
The addition or removal of an obstacle is considered
by estimating the new cost for each UAV given their
current assigned waypoints with (and without) the ob-
stacle in question. If the UAV’s cost estimate changes,
then that UAV is considered to be influenced by the
obstacle. The UAVs and their previously assigned way-
points are grouped into a new allocation problem and
the re-assignment is performed for this subset of the
fleet. If the UAV is influenced by the obstacle, the lo-
cal repair method does not change its assignment of
waypoints, but redesigns the detailed trajectory to ac-
count for the change. The sub-team problem considers
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Fig.2: Dynamic Environment Simulation. The stealth UAVs, ◦ are capable of flying through and removing radar sites noted with ✷ ’s.
The other UAVs are restricted from flying through radar zones and must remove targets marked with ×’s.

all UAVs that are influenced by the obstacle.

2.4 Dynamic Environment Simulation
Figure 2 shows three snapshots of the simulation that
applies the approximate allocation method presented
in [4] to a dynamic environment. The changes in the
environment during the simulation occur with no prior
knowledge and the fleet is re-assigned through the sub-
team re-allocation method.

The simulation includes two types of UAVs and two
types of obstacles. The solid black areas are no fly
zones that no UAV can pass through, such as moun-
tains or buildings. The second obstacle type, marked
with ✷, is a radar site that can detect within the sur-
rounding circle. The ◦ (vehicles 1 and 2) are stealth
UAVs capable of evading radar and are responsible for
removing the radar sites. The 
, �, � (vehicles 3, 4
and 5) do not have the stealth capability and cannot fly
through radar zones. These UAVs are responsible for
removing the targets marked with ×. These UAVs are
also only capable of flying 60% of the maximum speed
of the stealth UAVs.

The first plot (left) shows the original environment and
initial allocation of UAVs to targets. Note the UAVs
are assigned a sequence of tasks rather than just a single
task, as would be done in a “short-sighted” approach
to the allocation problem [3]. Note that the targets are
divided amongst the UAV’s to minimize mission time.

The second plot shows how the fleet is re-assigned when
UAV 1 removes radar site R1. The trajectory for UAV
4 is modified to fly through the previously obstructed
radar zone reducing the mission time for this UAV. As
a result, UAV 4 trades target T2 to UAV 5 and takes
over target T4 in order to reduce the total mission time
for the fleet. This demonstrates both the complete co-
operation among the fleet of UAVs and the ability of
this method to make decisions regarding not just the
current task, but future tasks that contribute to the
total cost of the mission.

In the third plot, UAV 2 has removed radar site R2
which again allows UAV 4 to shorten its trajectory.
However, a new radar site R5 is also detected by UAV 1,
which results in a reallocation of tasks for the stealth
UAVs. UAV 1 is now tasked with removing R5, while
UAV 2 receives R3 in addition to the previous task of
removing R4.

This simple simulation was developed to demonstrate
the capability of the UAV allocation problem presented
in this paper to adapt to changes in the environment.
The sub-team re-allocation method used in the simula-
tion allows fast reassignment of tasks within sub-teams
which leads to cooperation between the UAV in com-
pleting the total mission. The next section investigates
techniques for accounting for the uncertainty in the en-
vironment while developing the initial plan.

3 Optimization For A Stochastic Environment

This section presents three formulations of the alloca-
tion problem that are progressively more cognizant of
its stochastic properties. The first is a purely deter-
ministic formulation that assumes no UAVs are lost.
The second is a deterministic equivalent that models
the probability of UAV loss, without taking into con-
sideration the reduction in this probability that comes
from destroying anti-aircraft defenses [8, 9]. The third
is a new stochastic optimization that models both the
probability of UAV loss and the ability of cooperation
to reduce the probability of loss.

These formulations extend the basic minimum comple-
tion time formulation given in Eq. 1. The waypoint
permutations are expanded to include the UAV’s ter-
minal points. They also apply the constraints that force
the following variables to take their desired values; Vwvp

is 1 if waypoint w is visited by vehicle v on its pth per-
mutation and 0 if not, tw is the time that waypoint w
is visited, t0v is the aircraft’s time of departure from
its starting point, and Tdv is the length of time after
its departure that vehicle v visits its dth waypoint. In
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Fig. 3: Example of a purely deterministic allocation. tdv gives
the time at which point d is reached on UAV v’s mission. qdv is
the probability that point d is reached on UAV v’s mission.

order to emphasize distinctions between formulations,
we assign variable names with tildes to probabilities
and scores whose calculation neglects the coupling ef-
fects between UAV missions, and variable names with-
out tildes to their equivalents whose calculation takes
this coupling into consideration.

The results of applying these formulations to the same
allocation problem are presented, and the level of anti-
aircraft defense threat in the environment is varied to
understand its effects. The expected score of each ap-
proach is calculated in Section 4. The less sophisticated
approaches are shown to achieve worse expected scores
for simple problems, and to be unable to plan successful
missions for more difficult scenarios. The full stochas-
tic formulation is shown to achieve the highest expected
score.

3.1 Purely Deterministic Formulation
The first modified formulation extends the cost function
of Eq. 1 to include a score s̃dvp associated with each
waypoint in order to balance completion time against
the value of waypoints allocated to UAVs

max
xvp,t0v

J2 =
nmax∑

d=1

NV∑

v=1

NP∑

p=1

s̃dvpxvp

−α1t̄ − α2

NV

NV∑

v=1

(t0v + Tnmaxv) (2)

where s̃dvp an input to the allocation problem repre-
senting the score of the dth destination of vehicle v on its
pth permutation, and the weights α1 and α2 are selected
to weight completing the mission quickly against plan-
ning longer missions that visit more waypoints. The
requirement that every point be visited is relaxed, and
this formulation neglects the possibility of UAV attri-
tion. This formulation tends to result in “optimistic”
plans, in which risk is ignored in favor of high scores.

An example of a mission plan found with this purely
deterministic formulation is shown in Fig. 3. The cen-
tral waypoint has a score of 100 points, and the other
waypoints have a score of 10. The UAVs each receive a
score of 50 for returning to their starting point, repre-
senting the perceived value of the UAVs relative to the
waypoints. The full results in Tables 1–3 are discussed
in Section 4.

In this work, the probability that a UAV is destroyed
is calculated as proportional to the length of its path
within the anti-aircraft defense’s range. In the nominal
threat level case, the constant of proportionality was
chosen so that a path to the center of the smaller anti-
aircraft defense would have a probability of survival of
0.96. The formulations were also applied in environ-
ments in which the nominal constant of proportional-
ity was multiplied by factors of 3 and 7, respectively.
These particular selections are arbitrary, but the re-
sults of this comparison illustrate important trends in
the performance as the threat level increases.

With nominal threat levels, this formulation gave a
probability of 0.86 that the high value target at cen-
ter would be reached by the UAV to which it was allo-
cated. When the probability of destruction on each leg
was increased by a factor of 3 and 7, the probability of
reaching the high value target was 0.57 and 0.25 respec-
tively (see Table 3). This shows that in well-defended
environments, the deterministic formulation plans mis-
sions that are highly susceptible to failure.

3.2 Deterministic Equivalent of the Stochastic
Formulation
Similar to [8, 9], this second form models the threat
that each waypoint poses to UAVs as a fixed quan-
tity, so that destroying it does not decrease the risk to
other UAVs. This reduces the problem to multiplying
the score associated with each waypoint along a UAV’s
mission by the probability that the UAV reaches that
waypoint. This calculation can be done for every per-
mutation before the optimization is performed, so no
probabilities are explicitly represented in the optimiza-
tion program itself. This approach allows sophisticated
relationships between survival probability and radar ex-
posure to be used. Voronoi diagrams can be used as
a basis for path approximations in order to minimize
radar exposure [10], and time and probability values
for several different paths can be provided for each or-
dering of waypoints.

Let q̃dvp be the probability that vehicle v reaches the
dth destination on its pth permutation, and let d =
0 correspond to the vehicle’s starting position. Then
q̃0vp = 1.0 for all permutations, and

q̃dvp = q̃(d−1)vp

NW∏

w=1

q̃dvwp (3)



where q̃dvwp is the probability that an anti-aircraft de-
fense at waypoint w does not shoot down UAV v be-
tween its (d−1)th and dth destinations. Then, the cost
function of Eq. 2 can be modified to use the determin-
istic equivalent of the score q̃dvps̃dvp

max
xvp,t0v

J3 =
nmax∑

d=1

NV∑

v=1

NP∑

p=1

q̃dvps̃dvpxvp

−α1t̄ − α2

NV

NV∑

v=1

(t0v + Tnmaxv) (4)

where q̃dvps̃dvp is evaluated in the cost estimation step,
and is passed into the optimization as a parameter.
Fig. 4 shows allocation plans from the deterministic
equivalent formulation on a simple example. This for-
mulation includes a notion of risk, but does not recog-
nize the ability of UAVs to cooperate to decrease the
probability of attrition. As the threat level of the en-
vironment increases, this formulation tends to result in
“pessimistic” plans, in which some of the waypoints are
not visited. This occurs when the contribution to the
expected score of visiting the remaining waypoints is
offset by the decrease in expected score of doing so due
to a lower probability of surviving to return. The abil-
ity to reduce risk through cooperation can be captured
by evaluating the actual risk during optimization as a
function of the waypoint visitation precedence.

3.3 Stochastic Formulation
This section presents a new stochastic optimization for-
mulation that also maximizes the expected score. This
optimization will be shown to exploit phasing by at-
tacking the anti-aircraft defenses before the high value
targets, and to preserve the survival of the UAV which
visits the high value target. To determine whether an
anti-aircraft defense is in operation while a UAV flies
within its original range, the waypoint visitation prece-
dence is evaluated. If the time that UAV v begins the
leg leading to its dth destination is less than the time
waypoint w is visited, then waypoint w is considered to
threaten the UAV on this leg from d − 1 to d, and the
binary decision variable Advw is set to 1 to encode this
waypoint visitation precedence. The logical equivalence

Advw = 1 ⇔ t0v + T(d−1)v ≤ tw (5)

can be enforced with the constraints

t0v + T(d−1)v ≤ tw + M(1− Advw) + ε

tw ≤ t0v + T(d−1)v + M(1− Advw) + ε

where ε is a small positive number, M is a large positive
number. With this precedence information available,
constraints which evaluate the probability qdv that ve-
hicle v survives to visit the dth waypoint on its mission

can be formulated. The probability q̃dvw of vehicle v
not being destroyed on the leg leading to its dth desti-
nation by an intact air defense at waypoint w for the
selected permutation is evaluated as

q̃dvw = q̃dvpwxvp (6)

If waypoint w is visited before the vehicle starts the leg
to destination d, then the anti-aircraft defense at w is
assumed not to threaten the vehicle. Thus the actual
probability qdvw that vehicle v is not destroyed by an
anti-aircraft defense at w is 1. Otherwise, it is q̃dvw

qdvw ≤ q̃dvw + M(1− Advw) and qdvw ≤ 1 (7)

The actual probability qdv of reaching each destination
can be found by evaluating Eq. 3 in terms of the actual
probability of surviving each anti-aircraft defense qdvw

qdv = q(d−1)v

NW∏

w=1

qdvw (8)

where again, d = 0 corresponds to the vehicle’s start-
ing position and q0v = q̃0v = 1.0. Because Eq. 8 is
nonlinear in decision variables qdvw and qdv, it can-
not be included directly in the formulation, but can be
tranformed using logarithms as

log qdv = log q(d−1)v +
NW∑

w=1

log qdvw (9)

While this form accumulates the effects of each of the
anti-aircraft defense sites on the survival probability
over each leg of the mission, it only provides log qdv.
Evaluating the expected score requires qdv, and this
can be recovered approximately as q′dv by raising 10 to
the exponent log qdv using a piecewise linear function
which can be included into a MILP accurately using
3 binary variables, since the exact function is nearly
linear in the range of interest where probabilities are
above 0.3 [11].

The expectation of the mission score is then found by
summing waypoint scores multiplied by the probabil-
ity of reaching that waypoint. If the score of the dth

waypoint visited by vehicle v in its pth permutation is
s̃dvp, then the expectation of the score sdv that will be
received from visiting the waypoint is

∀p ∈ {1, 2, . . . , NP } : sdv ≤ q′dvs̃dvp+M(1−xvp) (10)

and the objective of the stochastic formulation is

max
xvp,t0v

J4 =
nmax∑

d=1

NV∑

v=1

sdv − α1t̄ − α2

NV

NV∑

v=1

(t0v + Tnmaxv)

(11)
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Fig. 4: Example Deterministic Equivalent Allocations. Nominal probabilities of destruction on the left, increased by factor of 3 in the
middle, and increased by factor of 7 on the right.
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Fig. 5: Example maximum expected score allocation. Nominal probabilities of destruction on the left, increased by factor of 3 in the
middle, and increased by factor of 7 on the right.

Optimal allocations for this problem are in Fig. 5,
and a careful analysis shows that it recovers phasing
(e.g., t02 = 76) and preserves the UAV that visits the
high value target. As the threat level in the environ-
ment increases, the upper and lower waypoints are ig-
nored.

4 Results

4.1 Nominal Environment
After the coordination problem was solved for nomi-
nal threat values using the three formulations described
above, the resulting allocation solutions were evaluated
using the model of the stochastic formulation of Sec-
tion 3.3. The resulting expected score, mission com-
pletion time, and probability of survival of the three
formulations is compared in Table 1. The computation
time of each formulation is also shown. Note that the
expected score of the purely deterministic and stochas-
tic formulations is very different, although the waypoint
combinations assigned to each UAV are the same and
the allocation differs mainly in timing. This emphasizes
the importance of timing of activities.

While some improvement over the completely deter-

ministic formulation is seen in the deterministic equiv-
alent formulation, the stochastic formulation achieves
the highest expected score. This formulation also does
the best job of protecting the survival of the UAV that
visits the high value target. It is, however, the most
computationally demanding formulation.

4.2 High Threat Environments
The results of applying all three formulations in high
threat environments are shown in Tables 2 and 3, which
indicate that (in high threat environments) the com-
pletely deterministic and deterministic equivalent ap-
proaches are incapable of recovering a higher expected
score than would be achieved by keeping the UAVs at
their base. Also, these two formulations are not capa-
ble of designing a plan that is likely to reach the high
value target.

4.3 Results on Larger Problem
It is typical of these problems that the expected score
formulation quickly finds a good answer that was close
to optimal, then made very small improvements in the
expected score for the rest of its solution time. To ex-
amine this in more detail, the expected score formula-
tion was also applied to a large problem with 4 vehicles



Table 1: Results of several formulations in probabilistic envi-
ronment (Nominal threat levels)

Exp. Computation
Formulation Score t̄ Time (s)

Min. Time 251.3 219.5 6.5

Deterministic Equiv. 263.8 219.5 7.0

Stochastic 273.1 276.5 27.1

Table 2: Expected scores in threatening environments. Various
probabilities of destruction (nominal, and 3 & 7 times higher).

Expected Score
Formulation Nominal ×3 ×7

Min. Time 251.3 173.1 81.4

Deterministic Equiv. 263.7 219.6 150.0

Stochastic 273.15 239.9 208.7

Table 3: Probability of reaching high value target. Various
probabilities of destruction (nominal, and 3 & 7 times higher).

Probability
Formulation Nominal 3 7

Min. Completion Time 0.86 0.57 0.25

Deterministic Equiv. 0.92 0.74 0.00

Stochastic 0.97 0.9 0.74

and 11 targets, and the expected score of the incumbent
solution was recorded over time during the optimization
process. This optimization was not solved to comple-
tion, but achieved a maximum score of about 342 in 60
minutes. However, an incumbent solution with an ex-
pected score of about 331 was found in only 18 seconds.
In this problem, each vehicle can visit 2 waypoints.

The results are shown in Fig. 6. Note that UAV 2 de-
lays its departure just long enough that 5 of the anti-
aircraft defenses have been destroyed. UAV 2 then vis-
its waypoint A at the same time (t = 108) as UAV 1
visits waypoint B. Also note that waypoints A and B
have been selected as the two that are farthest apart, so
that UAV 2 can reach the A without being significantly
threatened by B. This preserves UAV 2’s survival and
minimizes completion time.

5 Conclusions
The paper presents a new formulation of the stochastic
weapon-task assignment problem. This formulation is
shown to be an extension of previous work because it
accounts for the coupling between each UAV’s failure
probability and the missions assigned to all other UAVs.
To maximize the expected mission score, it is shown
that this stochastic formulation results in coordination
plans that optimally exploit the coupling effects of co-
operation between the UAVs to improve survival proba-
bilities. The allocation optimization recovers real-world
planning strategies, such as phasing of the UAVs, and
yields significant improvements over approaches that do
not correctly account for UAV attrition.
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UAV 1
UAV 2
UAV 3
UAV 4

Central waypoint:
(high value target) 

B

A

Fig. 6: Example Large Allocation Problem. Vehicle starting
positions shown with •. Seven of the waypoints represent anti-
aircraft defenses, while the 8th, at the center of the tight cluster
of waypoints, is a high value target that presents no threat.
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