
Robust and Decentralized Task Assignment

Algorithms for UAVs

by

Mehdi Alighanbari

M.Sc., Operations Research, MIT Sloan School of Management, 2004
M.Sc., Aeronautics and Astronautics, MIT, 2004

M.Sc., Electrical Engineering, NC A&T State University, 2001
B.Sc., Electrical Engineering, Sharif University of Technology, 1999

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Aeronautics and Astronautics

July 2, 2007

Accepted by .
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Department Committee on Graduate Students

2

Robust and Decentralized Task Assignment

Algorithms for UAVs

by

Mehdi Alighanbari

Accepted by .
Jonathan P. How

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Nicholas Roy

Assistant Professor of Aeronautics and Astronautics

Accepted by .
Emilio Frazzoli

Assistant Professor of Aeronautics and Astronautics

3

4

Robust and Decentralized Task Assignment

Algorithms for UAVs

by

Mehdi Alighanbari

Submitted to the Department of Aeronautics and Astronautics
on July 2, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis investigates the problem of decentralized task assignment for a fleet of
UAVs. The main objectives of this work are to improve the robustness to noise and
uncertainties in the environment and improve the scalability of standard centralized
planning systems, which are typically not practical for large teams. The main contri-
butions of the thesis are in three areas related to distributed planning: information
consensus, decentralized conflict-free assignment, and robust assignment.

Information sharing is a vital part of many decentralized planning algorithms. A
previously proposed decentralized consensus algorithm uses the well-known Kalman
filtering approach to develop the Kalman Consensus Algorithm (KCA), which incor-
porates the certainty of each agent about its information in the update procedure.
It is shown in this thesis that although this algorithm converges for general form of
network structures, the desired consensus value is only achieved for very special net-
works. We then present an extension of the KCA and show, with numerical examples
and analytical proofs, that this new algorithm converges to the desired consensus
value for very general communication networks.

Two decentralized task assignment algorithms are presented that can be used to
achieve a good performance for a wide range of communication networks. These in-
clude the Robust Decentralized Task Assignment (RDTA) algorithm, which is shown
to be robust to inconsistency of information across the team and ensures that the
resulting decentralized plan is conflict-free. A new auction-based task assignment al-
gorithm is also developed to perform assignment in a completely decentralized manner
where each UAV is only allowed to communicate with its neighboring UAVs, and there
is no relaying of information. In this algorithm, only necessary information is com-
municated, which makes this method communication-efficient and well-suited for low
bandwidth communication networks.

The thesis also presents a technique that improves the robustness of the UAV
task assignment algorithm to sensor noise and uncertainty about the environment.
Previous work has demonstrated that an extended version of a simple robustness
algorithm in the literature is as effective as more complex techniques, but significantly

5

easier to implement, and thus is well suited for real-time implementation. We have
also developed a Filter-Embedded Task assignment (FETA) algorithm for accounting
for changes in situational awareness during replanning. Our approach to mitigate
“churning” is unique in that the coefficient weights that penalize changes in the
assignment are tuned online based on previous plan changes. This enables the planner
to explicitly show filtering properties and to reject noise with desired frequencies.

This thesis synergistically combines the robust and adaptive approaches to de-
velop a fully integrated solution to the UAV task planning problem. The resulting
algorithm, called the Robust Filter Embedded Task Assignment (RFETA), is shown
to hedge against the uncertainty in the optimization data and to mitigate the effect
of churning while replanning with new information. The algorithm demonstrates the
desired robustness and filtering behavior, which yields superior performance to using
robustness or FETA alone, and is well suited for real-time implementation.

The algorithms and theorems developed in this thesis address important aspects of
the UAV task assignment problem. The proposed algorithms demonstrate improved
performance and robustness when compared with benchmarks and they take us much
closer to the point where they are ready to be transitioned to real missions.

6

Acknowledgments

In carrying out the research that went into this PhD dissertation, there were several

key individuals that played large roles in helping me make it to the end. This was

a long and difficult road at times and I thank everyone whole-heartedly for their

kindness and support.

Firstly I would like to thank my advisor, Professor Jonathan How, for directing

and guiding me through this research. I also thank my committee members, Professor

Nicholas Roy and Professor Emilio Frazzoli, for their input and oversights. Next, I

would like to thank my research colleagues at the Aerospace Controls Laboratory,

among them, Yoshiaki Kuwata, Louis Breger, and Luca Bertuccelli. Thanks also to

Professor How’s administrative assistant, Kathryn Fischer, for her support through-

out this time.

A special warm thank you to all my friends in Boston for their support and

assistance.

In appreciation for a lifetime of support and encouragement, I thank my parents,

Javaad and Shayesteh Alighanbari, my sisters, Jila, Jaleh and Laleh and my uncle

Reza Tajalli.

This research was funded under AFSOR contract # F49620-01-1-0453.

7

8

Contents

1 Introduction 21

1.1 Motivation . 21

1.1.1 Decentralized Task Assignment 22

1.1.2 Robust Planning . 23

1.2 Background . 24

1.2.1 UAV Task Assignment Problem 25

1.2.2 Consensus Problem . 25

1.3 Outline and Summary of Contribution 25

1.3.1 Kalman Consensus . 26

1.3.2 Robust Decentralized Task Assignment 27

1.3.3 Auction-Based Task Assignment 28

1.3.4 Robust Planning . 29

2 Kalman Consensus Algorithm 31

2.1 Introduction . 31

2.2 Consensus Problem . 33

2.2.1 Problem Statement . 33

2.2.2 Consensus Algorithm . 34

2.3 Kalman Consensus Formulation . 34

2.3.1 Kalman Consensus . 35

2.3.2 Centralized Kalman Consensus 36

2.3.3 Example . 36

2.4 Unbiased Decentralized Kalman Consensus 38

2.4.1 Information Form of UDKC 41

9

2.4.2 Proof of Unbiased Convergence 43

2.5 Conclusions . 50

3 Robust Decentralized Task Assignment 51

3.1 Introduction . 51

3.2 Implicit Coordination Algorithm . 53

3.3 Robust Decentralized Task Assignment 53

3.3.1 Algorithm Overview . 54

3.4 Analyzing the RDTA Algorithm . 57

3.4.1 Advantages of RDTA Over the Implicit Coordination 59

3.4.2 Simulation Setup . 59

3.4.3 Effect of ρ on the Conflicts . 60

3.4.4 Effect of Communication on the Two Phases of the Algorithm 61

3.4.5 Effect of Communication Structure on the Performance 63

3.4.6 Effect of Algorithm Choice in the First Stage of Planning Phase 65

3.5 Performance Improvements . 67

3.6 Hardware-In-the-Loop Simulations 69

3.7 Conclusions . 71

4 Decentralized Auction-Based Task Assignment 89

4.1 Introduction . 89

4.2 Problem Statement . 92

4.3 The New Decentralized Approach . 93

4.3.1 Algorithm Development . 94

4.3.2 Proof of Convergence . 95

4.4 Simulation Results . 98

4.4.1 Performance Analysis . 98

4.4.2 Communication Analysis . 99

4.4.3 Effect of Network Sparsity . 103

4.4.4 Effect of Prior Information . 106

4.5 Shadow Prices . 108

4.6 Conclusions . 110

10

5 Robust Filter-Embedded Task Assignment 113

5.1 Introduction . 113

5.2 Planning Under Uncertainty . 116

5.2.1 General Approaches to the UAV Assignment Problem 117

5.2.2 A Computationally Tractable Approach to Robust Planning . 118

5.3 Filter-Embedded Task Assignment 122

5.3.1 Problem Statement . 123

5.3.2 Assignment With Filtering: Formulation 124

5.3.3 Assignment With Filtering: Analysis 127

5.4 Robust FETA . 131

5.5 Numerical Simulations . 132

5.5.1 Graphical Comparisons . 133

5.5.2 Monte Carlo Simulations . 134

5.5.3 Impact of Measurement Update Rate 136

5.6 Conclusions . 138

6 Conclusions and Future Work 141

6.1 Conclusions . 141

6.2 Future Work . 144

Bibliography 147

11

12

List of Figures

1.1 Typical UAV Mission. 25

2.1 The result of Kalman consensus algorithm for cases 1 and 2, demon-

strating consistency with the results in Ref. [68]. 38

2.2 A simple imbalanced network with unequal outflows. 40

2.3 An example to show the bias of the Decentralized Kalman Consensus

Algorithm, xi(t) and Pi(t) are the estimate and its accuracy of agent

Ai at time t. 41

3.1 Implicit coordination approach using information consensus followed

by independent planning. 53

3.2 Robust Decentralized Task Assignment algorithm that adds an addi-

tional round of communication during the plan consensus phase. . . . 53

3.3 Optimal Plan resulting from consistent information. 72

3.4 Plan with conflicts resulting from inconsistent information. 72

3.5 Plan with inconsistent information. No conflict result from RDTA. . 72

3.6 Optimal plan for the scenario of 5 UAVs and 10 targets. 72

3.7 Effect of communication in the planning phase (closing the loop in the

planning phase) on the reduction of conflicts. 72

3.8 Effect of communication in the planning phase (closing the loop in the

planning phase) on the performance. 72

3.9 Effect of two important parameters (iterations for consensus and size

of candidate petal set) on the performance. 72

13

3.10 Effect on performance of communication in the two phases of algorithm

(consensus and loop closure in the planning). 72

3.11 Performance versus the number of iterations for different values of ρ. 72

3.12 Demonstration of the different network connection topologies. 72

3.13 Strongly connected communication network with 5 unidirectional links. 72

3.14 Strongly connected communication network with 10 unidirectional links. 72

3.15 Strongly connected communication network with 15 unidirectional links.

72

3.16 Comparing convergence rate of information in the consensus phase for

3 different network topologies. 72

3.17 Compare algorithms D and C to show effect of greediness in time.

z-axis is difference in performance D − C. 72

3.18 Compare algorithms D and B to show effect of coordination. z-axis is

difference in performance D −B. 72

3.19 Compare algorithms C and A to show effect of coordination. z-axis is

difference in performance C − A. 72

3.20 Comparing the performance of the original RDTA with its two modi-

fications for a case of 5 UAVs and 10 targets. 72

3.21 Comparing the performance of the original RDTA with its two modi-

fications for a case of 4 UAVs and 7 targets. 72

3.22 Hardware-in-the-loop simulation architecture with communication em-

ulator. 89

3.23 Hardware-in-the-loop simulation setup. 89

3.24 Architectures for the on-board planning module (OPM). 90

4.1 Performance of the ABTA algorithm compared to the optimal solution

for different numbers of agents and tasks. 99

4.2 Trend of suboptimality (deviation from optimality) for different num-

bers of tasks and agents (Nt = Nu). 100

14

4.3 Ratio of communication of each agent at each iteration (Implicit coor-

dination to the ABTA algorithm). 102

4.4 Ratio of total communication of each agent (Implicit coordination to

the ABTA algorithm). 102

4.5 Trend of total communication ratio for different numbers of tasks and

agents. 103

4.6 Performance of the ABTA algorithm for different communication net-

works (different levels of sparsity). 105

4.7 Total communication ratio for different communication networks (dif-

ferent levels of sparsity). 105

4.8 Effect of using prior information on the performance of the assignment.

The flat surface at z = 0 is plotted to clearly show the positive and

negative values. 107

4.9 Effect of using prior information on the communication of the assignment.107

4.10 Effect of the modified algorithm (with shadow prices) on the perfor-

mance of the algorithm. 110

5.1 Sensitivity of the robust algorithm to parameter λ. Here λ = 0 is the

nominal case. 121

5.2 Trajectory of a UAV under a worst-case churning effect in a simple

assignment problem. 125

5.3 Simulation results for a binary filter. 125

5.4 Block diagram representation of assignment with filtering. 126

5.5 Frequency response of the filter for different values of r (bandwidth). 128

5.6 Frequency response of the filter for different penalty coefficients, b0. . 128

5.7 Comparing the results of a filtered and an unfiltered plan (• represents

1 and ◦ represents 0). 130

5.8 Top left: Nominal planning; Top right: Nominal planning with FETA;

Bottom Left: Robust planning; Bottom Right: Robust planning with

FETA. 133

15

5.9 Result of the Monte Carlo simulation for the four algorithms. 135

5.10 Comparing the accumulated score and its confidence level for the four

algorithms. 135

5.11 Histogram comparing the mission completion time of the Nominal and

RFETA algorithms for the Monte Carlo simulations of subsection 5.5.2. 136

5.12 Impact on Measurement Update Time Interval (∆T) on Overall Score.

As the time between information updates increases, RFETA performs

identically to robust algorithms. A slight decrease in performance oc-

curs with increased certainty of this performance objective. 137

16

List of Tables

2.1 Comparing the results of different algorithms. 39

3.1 Comparing the results of different algorithms 66

5.1 Target parameters for Section 5.5.1 133

5.2 Comparison of convergence rate of the four algorithms. 136

5.3 Comparison of finishing times for different algorithms and measure-

ment updates. 137

17

18

Chapter 1

Introduction

This thesis investigates the problem of Robust and Decentralized Task Assignment

for Unmanned Aerial Vehicles (UAV). In particular, it addresses the limitations of

the centralized planning algorithms and develops new decentralized algorithms to

eliminate these limitations.

The introduction will continue with the motivation of the work in Section 1.1,

which defines the problems of interest and presents previous works in these areas

along with the challenges faced. Section 1.2 provides a brief background on the tools

that are used in this thesis, and finally, Section 1.3 presents the outline of the thesis

and the summary of contributions of each chapter.

1.1 Motivation

UAV planning and control have recently been given much attention from different

research communities due to their extensive predicted role in the future of air combat

missions [4, 5, 10, 21, 23, 24, 25, 33, 34, 41, 50, 52, 72]. With the current degree

of autonomy, today’s UAVs typically require several operators, but future UAVs will

be designed to autonomously make decisions at every level of planning and will be

integrated into teams that cooperate to achieve any mission goals, thereby allowing

one operator to control a fleet of many UAVs.

Achieving autonomy for UAVs is a complex problem and the degree of complexity

19

is different for different levels of decision making and is directly related to the degree of

cooperation required between UAVs. For instance, the low level control (i.e. waypoint

follower) requires almost no cooperation between UAVs and can be easily automated.

The highest level of cooperation is required in the task assignment level, where UAVs

need to share information, divide tasks and assign tasks to UAVs with the appropriate

task timing and ordering. This level of cooperation and information sharing makes

the autonomous task assignment problem very complex.

1.1.1 Decentralized Task Assignment

Cooperative Task Assignment for UAVs has been the topic of much research; many

different algorithms have been proposed to solve the task assignment problem [4, 5,

10, 21, 23, 24, 25, 33, 34, 41, 50, 52, 72], but most of these are centralized algorithms

and require a central planing agent [10, 34, 52, 72]. This agent can be a ground station

that receives all the information from all the UAVs, calculates the optimal plan, and

sends each UAV its plan. It can also be one of the UAVs in the team that acts as

the central planner. In this setup, the planner UAV is also called the leader. There

are also variations of this method, such as sub-team allocations, in which the fleet is

divided into smaller teams and each team has a leader [10] or emerging (dynamic)

leader in which each UAV can become a leader under certain circumstances [30].

Although the leader approach eliminates the need for a ground planner from the

task assignment algorithm, most of the issues associated with the centralized planning

(i.e. lack of autonomy, scalability, high level of communication, and robustness) still

exist. The desired level of autonomy in which each UAV can contribute to the overall

mission objective independently can only be accomplished when each UAV creates

its own plan while cooperating with other UAVs by means of communication. This

can only be achieved with a decentralized task assignment scheme. There are several

important questions that need to be answered in the decentralized task assignment.

An important part of the decentralized task assignment is the communication. What

should be communicated, when should it be communicated and to whom? What is

the optimal communication scheme, given the limitations and objectives? What is the

20

trade off between communication effort and performance? How much communication

bandwidth is enough? These are the core questions that need to be answered. There

are also important algorithmic questions that need to be answered. What is a good

distributed algorithm for UAV task assignment? Will the algorithm work in different

environments with different communication structures? How much communication is

needed? Is it robust to changes in the network structure? Does it always create a

feasible plan?

This thesis investigates the decentralized task assignment problem and addresses

these questions by introducing new approaches and analyzing many different aspects,

including:

• Information sharing is an essential and important part of the UAV task as-

signment problem. This problem is straightforward in the centralized schemes

in which every UAV communicates with the central planner. However, in any

decentralized method, information sharing becomes an important and very com-

plex problem. Most of the decentralized algorithms rely on the assumption of

consistent information among the fleet, and therefore convergence of the infor-

mation sharing algorithms becomes very important. In this thesis, a Kalman

filtering based consensus algorithm will be addressed and analytical and simu-

lation results will be presented to prove the convergence of the proposed algo-

rithms.

• The second part of this thesis will deal with the decentralized task assignment

algorithms. Different existing decentralized algorithms will be analyzed and

their advantages and disadvantages will be discussed. We further introduce two

new decentralized task assignment algorithms that address the issues associated

with the existing methods.

1.1.2 Robust Planning

UAVs in the near future will require an ever increasing number of higher-level planning

capabilities in order to successfully execute their missions. These missions will be

21

complex, requiring multiple heterogeneous vehicles to successfully cooperate in order

to achieve the global mission objective. The vehicles will also have to rely on their

sensor information to successfully classify true targets, reject false targets, and make

a coherent series of decisions to achieve their objectives. Unfortunately, the vehicles’

situational awareness will typically be impacted by the imperfections in the sensors

and/or adversarial strategies, all of which may lead the vehicles to falsely conclude

that a target is present in the environment, or that the target has a higher value than

it actually does. The vehicles will nonetheless have to use the information at their

disposal to autonomously come up with the actions, whether through a centralized

planner, or in a decentralized fashion.

An important component of these planning capabilities will be the ability to in-

corporate uncertainty in the mission plans, and conduct missions that are robust to

this uncertainty. The concept of robustness is an issue that mainly addresses the

performance objective, and notionally the goal of robust optimization is to maximize

the worst-case realization of the planner’s objective function. At the same time, the

vehicles will also need to update their information on the environment, and respond to

true changes in the battlespace, while correctly rejecting adversarial false information.

Failure to do so may result in a phenomenon called churning, whereby the vehicles

constantly replan based on their latest noisy information, and oscillate between tar-

gets without ever reaching any of the targets. Planner robustness to decisions, and

planner adaptiveness to the environment are thus two key components that must be

included in higher-level planners.

1.2 Background

The following sections briefly define the UAV task assignment problem and consensus

problem, which are the problems of interest throughout this thesis.

22

Figure 1.1: Typical UAV Mission.

1.2.1 UAV Task Assignment Problem

Figure 1.1 shows a simple UAV mission. In developing task assignment algorithms,

several assumptions are made. The set of tasks and waypoints associated with them

have been identified. Each team is made up of several UAVs with known starting

points, speed, and capability (i.e., strike, reconnaissance, etc.). It is also assumed

that there are “No Fly Zones” in the environment.

Given this information, the problem is to assign the UAVs to the tasks to optimally

fulfill a specified objective. The objective that is used throughout this research is

maximizing the expected time-discounted value of the mission.

1.2.2 Consensus Problem

Suppose there are n agents (i.e. UAVs) A = {A1, . . . ,An} with inconsistent infor-

mation and let xi be the information associated with agent i. The objective is for

the agents to communicate this information amongst themselves to reach consensus,

which means that all of the agents have the same information (xi = xj, ∀i, j ∈

{1, . . . , n}).

The communication pattern at any time t can be described in terms of a directed

graph G(t) = (A, E(t)), where (Ai,Aj) ∈ E(t) if and only if there is a unidirectional

information exchange link from Ai to Aj at time t.

If the information, xi of agent Ai, is updated in discrete time steps using the data

communicated from the other agents, then the update law can be written as

xi(t+ 1) = xi(t) +
N∑

j=1

αij(t)gij(t)(xj(t)− xi(t)) (1.1)

where αij(t) ≥ 0 represents the relative effect of information of agent Aj on the

information of agent Ai. The parameter αij(t) can be interpreted as the relative

confidence that agent Ai and Aj have that their information variables are correct [8].

Several methods such as Fixed Coefficients, Vicsek Model, Gossip Algorithm and

Kalman Filtering have been proposed to pick values for αij(t), [20, 68, 6].

1.3 Outline and Summary of Contribution

The goal of this research is to address two important issues of UAV task assignment

by developing new decentralized methods for the UAV task assignment problem and

making the assignment algorithms robust to the uncertainty and noise in the envi-

ronment. It involves work in theory, algorithm design, and simulations. The thesis

23

consists of four main chapters. In the following sections, the contributions of each

chapter are presented.

1.3.1 Kalman Consensus

The Kalman filtering idea can be used to design consensus algorithms. In the Kalman

filtering approach, the coefficients, αij in (1.1), are chosen to account for the uncer-

tainty each agent has in its information.

Ren et al. developed the Kalman filtering algorithm for the continuous and dis-

crete consensus problem and presented simulations and analytical proofs to show

that they converge [68]. However, these simulations make a strong assumption about

the topology of the communication network in which the inflow and outflow of all

the agents are equal. Although the algorithm converges for the general form of a

strongly connected communication network, its convergence to the true estimate (the

estimate if it was calculated using a centralized Kalman filter) is only guaranteed for

this special type of network.

This thesis proposes a modification to the decentralized Kalman consensus algo-

rithm to create unbiased estimates for the general case of communication networks.

The thesis provides simple examples that highlight the deficiencies of previous ap-

proaches, and simulation results that show this method eliminates biases associated

with the previous Kalman consensus algorithm. Theorems are presented to prove

the convergence of the new algorithm to the centralized estimate for many different

classes of communication networks.

Previous literature shows that to achieve the weighted average consensus with the

existing consensus algorithms, communication networks have to be balanced [59, 62].

The algorithm developed in this chapter eliminates this limiting requirement of a

balanced network and shows that the desired weighted average can be achieved for

the very general form of dynamic communication networks.

24

1.3.2 Robust Decentralized Task Assignment

One commonly proposed decentralized approach to planning is to replicate the central

assignment algorithm on each UAV [4, 25]. The success of this so called implicit

coordination algorithm strongly depends on the assumption that all UAVs have the

same information (situational awareness). However, this assumption is very limiting

and usually cannot be satisfied due to uncertain, noisy, and dynamic environments.

Chapter 3 presents simulations to show that reaching full information consensus for

these types of algorithms is both necessary and potentially time consuming. The

basic implicit coordination approach is then extended to achieve better performance

with imperfect data synchronization.

In the implicit coordination framework, UAVs communicate with each other and

apply the consensus algorithm until they reach full consensus. Having reached con-

sensus, every UAV implements a task assignment algorithm and creates the optimal

plan for the team and then implements its own plan. Since everything (information,

algorithms used) is identical in all UAVs, the resulting team plans will be identical

and therefore the implemented plan will also be optimal and conflict-free.

This thesis proposes a decentralized task assignment algorithm that is robust to

the inconsistency of the information and ensures that the resulting decentralized plan

is conflict-free. The resulting robust decentralized task assignment (RDTA) method

assumes some degree of data synchronization, but adds a second planning step based

on sharing the planning data. The approach is analogous to closing a synchronization

loop on the planning process to reduce the sensitivity to exogenous disturbances.

Since the planning in RDTA is done based on consistent, pre-generated plans, it

ensures that there are no conflicts in the final plans selected independently. Also, each

UAV will execute a plan that it created; thus it is guaranteed to be feasible for that

vehicle. Furthermore, communicating a small set of candidate plans helps overcome

any residual disparity in the information at the end of the information update phase.

This improves the possibility of finding a group solution that is close to the optimal,

while avoiding the communication overload that would be associated with exchanging

25

all possible candidates. There are two tuning knobs in the RDTA that makes it a

flexible task assignment algorithm. These knobs can be set for different mission

scenarios and different environments, so that the resulting plan meets the objectives

of the mission. For instance, the algorithm can increase the performance and achieve

an optimal solution if the required communication is provided, while for the cases

where the communication resources are limited, the RDTA algorithm still performs

well and produces feasible, conflict-free assignments.

1.3.3 Auction-Based Task Assignment

Although the RDTA algorithm performs well with most communication networks, it

has a minimum requirement. For instance, in the second stage of the algorithm, the

set of candidate plans is transmitted to every other UAV in the team. For networks

that are not complete (i.e., there does not exist a link from each UAV to every other

UAV), the UAVs must be able to relay the information received from one neighbor

to another. The requirement of having relaying capability does not impose a major

limitation and UAVs usually have this capability. However, if this requirement is

not satisfied, it can result in a significant performance degradation of the RDTA

algorithm.

Although the implicit coordination algorithm does not require this type of network

connectivity or relaying capability, it can make inefficient use of the communication

network. It was mentioned that, for the implicit coordination algorithm to perform

well, UAVs have to run a consensus algorithm to reach perfectly consistent informa-

tion. However, reaching consistent information can be cumbersome if the information

set is large, which is usually the case for a realistically sized problem. Note that this

limitation was one of the motivations that led to the development of the RDTA

algorithm.

An auction-based task assignment (ABTA) algorithm is developed in this thesis

that eliminates both limitations discussed above. It performs the assignment in a

completely decentralized manner, where each UAV is only allowed to communicate

with its neighboring UAVs and there is no relaying. In contrast to a basic auction

26

algorithm, where one agent is required to gather all the bids and assign the task to

the highest bidding agent, the ABTA algorithm does everything locally. This feature

enables the algorithm to create the task plan without any relaying of information

between agents. At the same time, the algorithm is communication efficient in the

sense that only the necessary information is communicated, and this enables the

approach to be used in low bandwidth communication networks.

Simulation results show that although the solution of the ABTA algorithm is

not optimal, it is very close to optimal and for most cases the sub-optimality is

less than 2%. The results also show that the algorithm performs well with sparse

communication networks and its advantages over the implicit coordination algorithm

become more apparent for sparse communication networks.

1.3.4 Robust Planning

This thesis extends prior work that investigated the issues of planner robustness and

adaptability [3, 18]. In particular, the individual advantages of robust planning [18]

and Filter Embedded Task Assignment (FETA) [3] are combined to produce a new

Robust Filter Embedded Task Assignment (RFETA) formulation that modifies the

previous approaches to robustly plan missions while mitigating the effects of churning.

Note that the previous algorithms were designed to operate under specific assump-

tions. The robust planning techniques, while accounting for cost uncertainty in the

optimization, did not assume online collection of measurements during the entire

mission, and hence did not include any notion of re-planning. Likewise, the FETA

algorithm, while incorporating concepts of replanning due to noisy sensors, did not

explicitly account for the cost uncertainty (i.e., target identity uncertainty). The new

RFETA algorithm combines robust planning with online observations, and is there-

fore a more general algorithm that relies on fewer modeling assumptions. Extensive

simulation results are presented to demonstrate the improvements provided by the

new approach.

In Refs. [2, 3] we provided a new algorithm that accounts for changes in the

SA during replanning. In this chapter, we extend this algorithm and show that the

27

modified algorithm demonstrates the desired filtering behavior. Further analysis is

provided to show these properties. The main contribution of this chapter is combining

the robust planning [18] and adaptive approaches to develop a fully integrated solution

to the UAV task planning problem, and discussing the interactions between the two

techniques in a detailed simulation. The resulting Robust Filter Embedded Task

Assignment (RFETA) is shown to provide an algorithm that is well suited for real-

time calculation and yields superior performance to using robustness or FETA alone.

28

Chapter 2

Kalman Consensus Algorithm

2.1 Introduction

Coordinated planning for a group of agents has been given significant attention in

recent research [4, 10, 21, 23, 25, 52, 72]. This includes work on various planning ar-

chitectures, such as distributed [4, 25], hierarchic [21, 23], and centralized [10, 52, 72].

In a centralized planning scheme, all of the agents communicate with a central agent

to report their information and new measurements. The central planner gathers this

available information to produce coordinated plans for all agents, which are then

redistributed to the team. Note that generating a coordinated plan using a central-

ized approach can be computationally intensive, but otherwise it is relatively straight

forward because the central planner has access to all information. However, this

approach is often not practical due to communication limits, robustness issues, and

poor scalability [4, 25]. Thus attention has also focused on distributed planning ap-

proaches, but this process is complicated by the extent to which the agents must share

their information to develop coordinated plans. This complexity can be a result of

dynamic or risky environments or strong coupling between tasks, such as tight timing

constraints. One proposed approach to coordinated distributed planning is to have the

agents share their information to reach consensus and then plan independently [25].

Several different algorithms have been developed in the literature for agents to

reach consensus [8, 20, 38, 59, 60, 61, 67, 68, 69] for a wide range of static and

29

dynamic communication structures. In particular, a recent paper by Ren et al. [68]

uses the well known Kalman filtering approach to develop the Kalman Consensus

Algorithm (KCA) for both continuous and discrete updates and presents numerical

examples and analytical proofs to show their convergence.

The objective of this chapter is to extend the algorithm developed in Ref. [68]

to not only ensure its convergence for the general form of communication networks,

but also ensure that the algorithm converges to the desired value. In the Kalman

Consensus Algorithm the desired value is the value that is achieved if a centralized

Kalman filter was applied to the initial information of the agents. We show, both by

simulation and analytical proofs, that the new extended algorithm always converges

to the desired value.

The main contribution of this chapter is developing a Kalman Consensus Al-

gorithm that gives an unbiased estimate of the desired value for static and dynamic

communication networks. The proof of convergence of the new Unbiased Decentralized

Kalman Consensus (UDKC) algorithm to this unbiased estimate is then provided for

both static and dynamic communication networks. Since the desired value in Kalman

Consensus is essentially a weighted average of the initial information of the agents,

the proposed algorithm can also be used to achieve a general weighted average for

the very general form of communication networks. Previous research had shown that

the weighted average can only be achieved for the special case of strongly connected

balanced networks. Another contribution of this chapter is showing that these con-

straints on the network can be relaxed and the proposed algorithm still reaches the

desired weighted average.

Section 2.2 provides some background on the consensus problem and Section 2.3

formulates the Kalman Consensus Algorithm and discusses the convergence prop-

erties. The new extension to the Kalman Consensus Algorithm is formulated in

Section 2.4 and more examples are given to show its convergence to an unbiased

estimate. Finally, the proof of convergence to an unbiased estimate for static and

dynamic communication structure is given.

30

2.2 Consensus Problem

This section presents the consensus problem statement and discusses some common

algorithms for this problem [8, 20, 38, 59, 60, 61, 67, 68, 69].

2.2.1 Problem Statement

Suppose there are n agents A = {A1, . . . ,An} with inconsistent information and let

xi be the information associated with agent i. The objective is for the agents to

communicate this information amongst themselves to reach consensus, which means

that all of the agents have the same information (xi = xj, ∀i, j ∈ {1, . . . , n}).

To simplify the notation in this chapter, we assume that the information is a scalar

value, but the results can be easily extended to the case of a vector of information.

The communication pattern at any time t can be described in terms of a directed

graph G(t) = (A, E(t)), where (Ai,Aj) ∈ E(t) if and only if there is a unidirectional

information exchange link from Ai to Aj at time t. Here we assume that there is a link

from each agent to itself, (Ai,Ai) ∈ E(t), ∀ i, t. The adjacency matrix G(t) = [gij(t)]

of a graph G(t) is defined as

gij(t) =

 1 if (Aj,Ai) ∈ E(t)

0 if (Aj,Ai) /∈ E(t)
(2.1)

and a directed path from Ai to Aj is a sequence of ordered links (edges) in E of

the form (Ai,Ai1), (Ai1 ,Ai2), . . . , (Air ,Aj). A directed graph G is called strongly

connected if there is a directed path from any node to all other nodes [31] and a

balanced network is defined as a network where for any node Ai, its outflow equals

its inflow.

31

2.2.2 Consensus Algorithm

If the information, xi of agent Ai, is updated in discrete time steps using the data

communicated from the other agents, then the update law can be written as

xi(t+ 1) = xi(t) +
N∑

j=1

αij(t)gij(t)(xj(t)− xi(t)) (2.2)

where αij(t) ≥ 0 represents the relative effect of information of agent Aj on the

information of agent Ai. The parameter αij(t) can be interpreted as the relative

confidence that agent Ai and Aj have that their information variables are correct [8].

Equation (2.2) can also be written in matrix form as x(t + 1) = A(t)x(t), where

x(t) = [x1(t), . . . , xn(t)]T , and the n× n matrix A(t) = [aij(t)] is given by

aij(t)

 ≥ 0 if gij(t) = 1

= 0 if gij(t) = 0
(2.3)

Several methods such as Fixed Coefficients, Vicsek Model, Gossip Algorithm and

Kalman Filtering have been proposed to pick values for the matrix A [20], [68]. In

the Kalman Filtering approach, the coefficients, aij, are chosen to account for the

uncertainty each agent has in its information. Section 2.3.1 summarizes the Kalman

filter formulation of consensus problem from Ref. [68]. Simulations are then presented

to show that the performance of this algorithm strongly depends on the structure of

the communication network. An extension to this algorithm is proposed in Section 2.4

that is shown to work for more general communication networks.

2.3 Kalman Consensus Formulation

This section provides a brief summary of Ref. [68], which uses Kalman Filtering

concepts to formulate the consensus problem for a multi-agent system with static

information.

32

2.3.1 Kalman Consensus

Suppose at time t, xi(t) represents the information (perception) of agent Ai about

a parameter with the true value x∗. This constant true value is modeled as the

state, x∗(t), of a system with trivial dynamics and a zero-mean disturbance input

w ∼ (0, Q),

x∗(t+ 1) = x∗(t) + w(t)

The measurements for agents Ai at time t are the information that it receives from

other agents,

zi(t) =


gi1(t)x1(t)

...

gin(t)xn(t)

 (2.4)

where gij(t) = 1 if there is a communication link at time t from agent Aj to Ai, and

0 otherwise. Assuming that the agents’ initial estimation errors, (xi(0) − x∗), are

uncorrelated, E[(xi(0)− x∗)(xj(0)− x∗)T] = 0, i 6= j and by defining

Pi(0) = E[(xi(0)− x∗)(xi(0)− x∗)T]

then the discrete-time Kalman Consensus Algorithm for agent i can be written as

[68]

Pi(t+ 1) =

{
[Pi(t) +Q(t)]−1 +

n∑
j=1,j 6=i

gij(t) [Pj(t)]
−1

}−1

(2.5)

xi(t+ 1) = xi(t) + Pi(t+ 1)
n∑

j=1,j 6=i

{
gij(t) [Pj(t)]

−1 [xj(t)− xi(t)]
}

Since it is assumed that gii = 1, then to make the formulation similar to the one in

Ref. [68], i is excluded from the summations (j 6= i) in the above equations. Equa-

tions (2.5) are applied recursively until all the agents converge in their information or,

equivalently, consensus is reached (t = 1, . . . , Tconsensus). Note that, although Pi(0)

represents the initial covariance of xi(0), the values Pi(t); t > 0 need not have the

33

same interpretation – they are just weights used in the algorithm that are modified

using the covariance update procedure of the Kalman filter.

Ref. [68] shows that under certain conditions the proposed Kalman Consensus

Algorithm converges and the converged value is based on the confidence of each

agent about the information. The following sections analyze the performance of this

algorithm for different network structures and modifications are proposed to improve

the convergence properties.

2.3.2 Centralized Kalman Consensus

The centralized Kalman estimator for the consensus problem is formulated in this

section to be used as a benchmark to evaluate different distributed algorithms. Since

the centralized solution is achieved in one iteration (TConsensus = 1) and the decen-

tralized solution is solved over multiple iterations (TConsensus > 1), some assumptions

are necessary to enable a comparison between the two algorithms. In particular, since

the process noise is added in each iteration and the centralized solution is done in one

step, consistent comparisons can only be done if the process noise is zero (w(t) = 0;

∀ t). These assumptions are made solely to enable a comparison of different algo-

rithms with the benchmark (centralized), and they do not impose any limitations on

the algorithm that will be developed in the next sections. Under these assumptions,

the centralized solution using the Kalman filter is

P̄ =

{
n∑

i=1

[Pi(0)]
−1

}−1

(2.6)

x̄ = P̄
n∑

i=1

{
[Pi(0)]

−1 xi(0)
}

2.3.3 Example

The meet-for-dinner example [68] is used in this chapter as a benchmark to compare

the performance (accuracy) of different algorithms. In this problem, a group of friends

decide to meet for dinner, but fail to specify a precise time to meet. On the afternoon

34

of the dinner appointment, each individual realizes that he is uncertain about the time

of dinner. A centralized solution to this problem is to have a conference call and decide

on the time by some kind of averaging on their preferences. Since the conference call is

not always possible, a decentralized solution is required. In the decentralized solution,

individuals contact each other (call, leave messages) and iterate to converge to a time

(reach consensus). Here the Kalman Consensus algorithm from Section 2.3.1 is used

to solve this problem for n = 10 agents. Figure 2.1 shows the output of this algorithm

for the two cases presented in Ref. [68], demonstrating that the results obtained are

consistent. These simulations use a special case of a balanced communication network

in which each agent communicates with exactly one other agent so that

Inflow(Ai) = Outflow(Ai) = 1, ∀ Ai ∈ A (2.7)

where Inflow(Ai) is the number of links of the form (Aj,Ai) ∈ E and Outflow(Ai) is

the number of links of the form (Ai,Aj) ∈ E .

In the left plot of Figure 2.1, the initial states and the initial variances are uni-

formly assigned (Case 1). In the right plot, the variance of the agent with initial data

xi(0) = 7 (leader) is given an initial variance of Pi(0) = 0.001, which is significantly

lower than the other agents and therefore has more weight on the final estimate (Case

2). To evaluate the performance of this algorithm, the results are compared to the

true estimate, x̄, calculated from the centralized algorithm in (2.6). The results in

Table 2.1 clearly show that the solution to the decentralized algorithm in (2.5) is

identical to the true centralized estimate.

As noted, these cases assume the special case of the communication networks

in (2.7). To investigate the performance of the decentralized algorithm in more general

cases, similar examples were used with slightly different communication networks.

The graphs associated with these new architectures are still strongly connected, but

the assumption in (2.7) is relaxed. This is accomplished using the original graphs

of Cases 1 and 2 with four extra links added to the original graph. The results are

presented in Table 2.1 (Cases 3, 4). For these cases, the solution of the decentralized

35

Figure 2.1: The result of Kalman consensus algorithm for cases 1 and 2, demonstrating
consistency with the results in Ref. [68].

algorithm of (2.5) deviates from the true estimate, x̄, obtained from the centralized

solution. The Kalman Consensus Algorithm always converges to a value that respects

the certainty of each agent about the information, but these results show that in cases

for which the network does not satisfy the condition of (2.7), the consensus value can

be biased and deviate from the centralized solution.

The next section extends this algorithm to eliminate this bias and to guarantee

convergence to the true centralized estimate, x̄, for the general case of communication

networks.

2.4 Unbiased Decentralized Kalman Consensus

This section extends the Kalman Consensus formulation of (2.5) to achieve the de-

sired unbiased solution, which is the solution to the centralized algorithm presented

in (2.6). The new extended algorithm generates the true centralized estimate, x̄,

using a decentralized estimator for any form of communication networks.

The main idea is to scale the accuracy of the agents by their outflow, which gives

the Unbiased Decentralized Kalman Consensus (UDKC) algorithm. For agent Ai at

time t+ 1, the solution is given by

Pi(t+ 1) =

{
[Pi(t) +Q(t)]−1 +

n∑
j=1

(
gij(t) [µj(t)Pj(t)]

−1)}−1

(2.8)

xi(t+ 1) = xi(t) + Pi(t+ 1)
n∑

j=1

{
gij(t) [µj(t)Pj(t)]

−1 [xj(t)− xi(t)]
}

where µj(t) is the scaling factor associated with agent Aj and,

µj(t) =
n∑

k=1, k 6=j

gkj(t) (2.9)

36

Table 2.1: Comparing the results of different algorithms.

Algorithm Case 1 Case 2 Case 3 Case 4

Centralized 6.0433 6.9142 6.0433 6.9142

Kalman Consensus 6.0433 6.9142 5.6598 6.2516

UDKC 6.0433 6.9142 6.0433 6.9142

To show the unbiased convergence of the UDKC algorithm, the four cases of the

meet-for-dinner problem in Section 2.3.3 were re-solved using this new approach.

The results for the four cases are presented in Table 2.1. As shown, in all four cases

the UDKC algorithm converges to the true estimates (the results of the centralized

algorithm). The following remarks provide further details on the UDKC algorithm.

i) Both the original KCA and new UDKC formulations presented here differ from

the previously developed weighted average consensus algorithms [62] in the sense

that these algorithms not only update the information in each iteration, but also

update the weights (P ’s) that are used in the formulation. This additional up-

date (Eqs. 2.5 and 2.8) enables the UDKC algorithm to converge to the desired

weighted average for a very general class of communication networks, while the

previous form of consensus algorithm (Eq. 2.2), where only the information it-

self gets updated at each iteration [62], was limited to a special kind of strongly

connected balanced network.

ii) Reference [62] introduces an alternative form of the consensus algorithm that

has some apparent similarities to the UDKC formulation introduced in this

chapter. The form of the consensus algorithm in [62] is as follows:

ẋi =
1

|Ni|
∑
j∈Ni

(xj − xi) (2.10)

where Ni = {j ∈ A : (i, j) ∈ E} is the list of neighbors of agent Ai. Note that

in the notation of [62], if (i, j) ∈ E then there is a link from Ai to Aj but the

37

Figure 2.2: A simple imbalanced network with unequal outflows.

information flow is from Aj to Ai. Therefore, although |Ni| is defined as the

outdegree of agent Ai, it is essentially the inflow of agent Ai in our formulation.

Thus the consensus formulation of Eq. 2.10 has a scaling factor that is equal to

the inflow of the receiving agent, Ai. Note however, that the scaling factor in

the UDKC algorithm (the coefficient µ in Eq. 2.8) is the outflow of the sending

agent, Aj. This clarifies the key differences between UDKC and the method

introduced in Ref. [62].

iii) The scaling introduced in UDKC (the coefficient µ in Eq. 2.8) does not change

the topology of the network to make it a balanced network. The implicit effect

of µ is essentially making the outflows of all agents equal to 1 and has no effect

on the inflow of the agents. Thus the resulting network will not necessarily

be a balanced network and therefore the results presented in Refs. [59, 62] for

balanced networks can not be used to prove the convergence of the UDKC

algorithm to the desired weighted average. Figure 2.2 shows a simple network

that is neither balanced (Inflow(1) = 1,Outflow(1) = 2) nor are its outflows

equal (Outflow(1) = 2,Outflow(2) = 1). The adjacency matrix for this network

is: 
0 0 1

1 0 0

1 1 0

 (2.11)

and applying the scaling µ defined in Eq. 2.9 gives
0 0 1

0.5 0 0

0.5 1 0

 (2.12)

which has the same outflow for all the nodes, but is still imbalanced (Inflow(2) =

0.5,Outflow(2) = 1).

38

Figure 2.3: An example to show the bias of the Decentralized Kalman Consensus
Algorithm, xi(t) and Pi(t) are the estimate and its accuracy of agent Ai at time t.

To show why the outflow scaling results in convergence to the desired solution, a

simple example is presented here. Based on the Kalman filter, the relative weights

given to each estimate should be relative to the accuracy of the estimates, Pi’s

(see (2.6)). The formulation in (2.5) uses the same idea, but these weights are further

scaled by the outflow of the agents. This means that if agent Ai and Aj have exactly

the same accuracy, Pi = Pj, but in addition the outflow of agent Ai is greater than

the outflow of agent Aj, then using (2.5) causes the information of agent Ai to be

treated as if it is more accurate than information of Aj (or the effective value of Pi

is less than Pj), which creates a bias in the converged estimate. Obviously, for the

special balanced networks considered in the simulations of Ref. [68], this bias does

not occur since the outflows are all equal to one.

Figure 2.3 presents a simple example to illustrate the problem with the Kalman

Consensus Algorithm of (2.5). There are 3 agents with [x1(0) x2(0) x3(0)] = [4 5 6]

and (Pi(0) = 1, i ∈ {1, 2, 3}). As shown in the figure, the outflows of agents 2 and

3 are both one, but it is two for agent 1. Since all agents have the same initial accu-

racy, the centralized solution is the average of the initial estimates, x̄ = 5. Figure 2.3

shows four steps of the Kalman Consensus Algorithm for this example. At time t = 3,

all of the estimates are less than 5, and the final converged estimate is 4.89, which

is different from the centralized estimate. Note also that the deviation of the final

value from the correct estimate is towards the initial value of agent 1, which has the

largest outflow. This bias is essentially the result of an imbalanced network in which

information of agents with different outflows is accounted for in the estimation with

different weights. In order to eliminate the bias, weights should be modified to cancel

the effect of different outflows, which is essentially the modification that is introduced

in (2.8).

The following sections present the proof of convergence of the UDKC algorithm

to the true centralized estimate.

2.4.1 Information Form of UDKC

The information form of Kalman Filtering is used to prove that the UDKC algorithm

converges to the true centralized estimate, x̄, in (2.6). The information filter is

an equivalent form of the Kalman filter that simplifies the measurement update,

but complicates the propagation [56]. It is typically used in systems with a large

measurement vector, such as sensor fusion problems [42, 43]. Since the propagation

part of the Kalman filter is absent (or very simple) in the consensus problem, the

information form of the filter also simplifies the formulation of that problem. The

following briefly presents the information form of the Kalman consensus problem. To

39

be consistent with the example in Section 2.3.3, it is assumed that the process noise

is zero. To write the UDKC (2.8) in the information form, for agent Ai define

Yi(t) ≡ Pi(t)
−1 and yi(t) ≡ Yi(t)xi(t) (2.13)

then, (2.8) can be written as

Yi(t+ 1) =
1

2

{
Yi(t) +

n∑
j=1,j 6=i

gij(t)

µj(t)
Yj(t)

}
(2.14)

yi(t+ 1) =
1

2

{
yi(t) +

n∑
j=1,j 6=i

gij(t)

µj(t)
yj(t)

}
(2.15)

and after each iteration (time t), for agent Ai

xi(t) = Yi(t)
−1yi(t) (2.16)

Note that the expressions in (2.15) are scaled by a factor of 1/2, which has no effect on

the estimation, but simplifies later proofs. These equations can be written in matrix

form,

Y(t+ 1) = Ψ(t)Y(t) (2.17)

y(t+ 1) = Ψ(t)y(t) (2.18)

where Y(t) = [Y1(t), . . . , Yn(t)]T , y(t) = [y1(t), . . . , yn(t)]T and Ψ(t) = [ψij(t)] with

ψij(t) =


1

2
if j = i

gij(t)

2µj(t)
if j 6= i

(2.19)

A comparison of the simple linear update in (2.17) and (2.18) with the nonlinear

updates of the Kalman filter (2.8) shows the simplicity of this information form for the

40

consensus problem. Note that since agents iterate on communicating and updating

their information before using it, the inversions in (2.13) and (2.16) do not need to

be performed every iteration. At the beginning of the consensus process, each agent

Ai transforms its initial information, xi(0), and associated accuracy, Pi(0), to yi(0)

and Yi(0) using (2.13). In each following iteration, the transformed values (yi(t),

Yi(t)) are communicated to other agents and are used in the update process of (2.15).

At the end of the consensus process the state xi(Tconsensus) can be extracted from

yi(Tconsensus) and Yi(Tconsensus) using (2.16).

2.4.2 Proof of Unbiased Convergence

This section provides the results necessary to support the proof of convergence of the

UDKC algorithm to an unbiased estimate in the absence of noise.

Definition 2.1 ([73]) A nonnegative matrix A = [aij] ∈ Cn×n is called row stochas-

tic if
∑n

j=1 aij = 1, 1 ≤ i ≤ n and it is called column stochastic if
∑n

i=1 aij = 1,

1 ≤ j ≤ n. Note that if A is a row stochastic matrix, AT is a column stochastic

matrix.

Theorem 2.1 ([73]) If we denote by e ∈ Rn the vector with all components +1, a

nonnegative matrix A is row stochastic if and only if Ae = e.

Lemma 2.1 The matrix Ψ(t) = [ψij(t)] defined in (2.19) is column stochastic.

Proof: For any column j,

n∑
i=1

ψij(t) =
1

2

(
1 +

n∑
i=1,i6=j

gij(t)

µj(t)

)
=

1

2

(
1 +

1

µj(t)

n∑
i=1,i6=j

gij(t)

)
(2.20)

Thus using (2.9)
n∑

i=1

ψij(t) =
1

2

(
1 +

1

µj(t)
µj(t)

)
= 1 (2.21)

so Ψ is column stochastic.

Lemma 2.2 The directed graph associated with matrix Ψ = [ψij] defined in (2.19),

is strongly connected.

41

Proof: By definition (2.19), ψij > 0 if gij > 0 and ψij = 0 if gij = 0 and therefore

matrices Ψ = [ψij] and G = [gij] are both adjacency matrices to the same graph, which

was assumed to be strongly connected.

Theorem 2.2 ([78]) For any A = [aij] ∈ Cn×n, A is irreducible if and only if its

directed graph G(A) is strongly connected.

Theorem 2.3 (Perron-Frobenius Theorem, [78]) Given any A = [aij] ∈ Rn×n,

with A � 0 and with A irreducible, then:

i) A has a positive real eigenvalue equal to its spectral radius ρ(A);

ii) to ρ(A) there corresponds an eigenvector v = [v1, v2, . . . , vn]T � 0;

iii) ρ(A) is a simple eigenvalue of A.

Theorem 2.4 (Geršgorin, [35]) Let A = [aij] ∈ Cn×n, and let

Ri(A) ≡
n∑

j=1,j 6=i

|aij|, 1 ≤ i ≤ n (2.22)

denote the “deleted absolute row sums” of A. Then all the eigenvalues of A are located

in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}

Definition 2.2 A nonnegative matrix A ∈ Cn×n is said to be “primitive” if it is

irreducible and has only one eigenvalue of maximum modulus.

Theorem 2.5 ([35]) If A ∈ Cn×n is nonnegative and primitive, then

lim
m→∞

[ρ(A)−1A]m = L � 0

where L = vuT , Av = ρ(A)v, ATu = ρ(A)u, v � 0, u � 0, and vTu = 1.

42

Lemma 2.3 For the matrix Ψ = [ψij] defined in (2.19),

lim
m→∞

Ψm = veT � 0

where v is a column vector and for the matrix C, C � 0 means that cij > 0 ∀ i, j.

Proof: By definition Ψ � 0 (ψij ≥ 0), and the directed graph associated with it is

strongly connected (Lemma 2.2), so from Theorem 2.2, Ψ is irreducible. Thus Ψ has

a simple eigenvalue equal to ρ(Ψ) (Theorem 2.3).

Furthermore, Ψ is column stochastic (Lemma 2.1) and by definition Ψ has an

eigenvalue λ1 = 1 (Theorem 2.1). Using the Geršgorin Theorem (Theorem 2.4), all

of the eigenvalues of the row-stochastic matrix ΨT are located in the union of n disks

n⋃
i=1

{z ∈ C : |z − ψii| ≤ Ri(Ψ
T)}

Using (2.19), ψii = 0.5, ∀i, and Ri(Ψ
T) = 0.5 (see (2.22)), and thus all the eigenval-

ues of ΨT and Ψ are located in the disc {z ∈ C : |z − 0.5| ≤ 0.5}. Consequently all

the eigenvalues of Ψ satisfy |λi| ≤ 1, ∀i, and hence ρ(Ψ) ≤ 1.

Since λ1 = 1, therefore λ1 = ρ(Ψ) = 1. As a result Ψ has only one eigenvalue

of maximum modulus and therefore is primitive (see Definition 2.2). Finally, using

Theorem 2.5,

lim
m→∞

[ρ(Ψ)−1Ψ]m = L � 0

where L = vuT , Ψv = ρ(Ψ)v, ΨTu = ρ(Ψ)u, v � 0, u � 0, and vTu = 1. However,

since ρ(Ψ) = 1, and using Theorem 2.1, u = e, then it follows that limm→∞Ψm =

veT � 0.

With these results, we can now state the main result of the chapter.

Theorem 2.6 For any strongly connected, time-invariant communication network,

G, and for any agent Ai and any initial estimate, xi(0), and variance, Pi(0), the

estimate, xi(t), resulting from the Modified Distributed Kalman Consensus Algorithm

introduced in (2.8) and (2.15), converges to the true centralized estimate, x̄, calculated

43

using (2.6), or equivalently,

lim
t→∞

xi(t) → x̄ ∀i ∈ {1, . . . , n} (2.23)

Proof: The objective is to show that (2.23) is satisfied or equivalently, limt→∞ x(t) →

x̄e, where x = [x1, . . . , xn]T . Let v† denote the element inverse of a vector, v† =

[v−1
1 , . . . , v−1

n]T . Using (2.16) it follows that limt→∞ x(t) = limt→∞Y†(t)�y(t), where

the operator � represents the element by element multiplication. With the assumed

time-invariance of the communication network, Ψ(t) = Ψ, and using (2.17) and (2.18)

lim
t→∞

x(t) = lim
t→∞

(
ΨtY(0)

)† � (Ψty(0)
)

Using Lemma 2.3,

lim
t→∞

x(t) =

v eTY(0)︸ ︷︷ ︸
scalar

†

�

v eTy(0)︸ ︷︷ ︸
scalar


=

(
eTY(0)

)−1 (
v† � v

) (
eTy(0)

)
Since vTe � 0 (Lemma 2.3), v � 0, therefore, v† � v = e and

lim
t→∞

x(t) =
(
eTY(0)

)−1 (
eTy(0)

)
e

=

{
n∑

i=1

Yi(0)

}−1{ n∑
i=1

yi(0)

}
e

Using the relationship Yi(0) = Pi(0)
−1, it follows that

lim
t→∞

x(t) =

{
n∑

i=1

Pi(0)
−1

}−1{ n∑
i=1

Pi(0)
−1xi(0)

}
e

and then from (2.6), limt→∞ x(t) = x̄e. Thus the UDKC algorithm introduced in (2.8)

converges to the true centralized estimate, x̄, when the strongly connected communi-

cation network is time-invariant.

44

In what follows we prove that the same is true for a time-varying communication

network.

Definition 2.3 ([79]) A stochastic matrix A is called indecomposable and aperiodic

(SIA) if

L = lim
m→∞

Am

exists and all the rows of L are the same. Define δ(A) by

δ(A) = max
j

max
i,k

|aij − akj|

Note that if the rows of A are identical, δ(A) = 0, and vice versa.

Definition 2.4 Let A1, . . . , Ak ∈ Cn×n. By a word in Ai’s of the length t we mean

the product of t Ai’s with repetition permitted.

Theorem 2.7 ([79]) Let A1, . . . , Ak be square row-stochastic matrices of the same

order such that any word in the Ai’s is SIA. For any ε > 0 there exists an integer

ν(ε) such that any word B (in the A’s) of length m ≥ ν(ε) satisfies δ(B) < ε.

In other words, the result is that any sufficiently long word in the Ai’s has all its rows

the same or, limm→∞A1A2 . . . Am = evT .

Lemma 2.4 If matrices A1, . . . , AN ∈ Rn×n, ∀i, Ai � 0 have strictly positive diagonal

elements, then matrix C = A1A2 . . . AN has the same properties (C � 0 and all

diagonal elements of C are strictly positive).

Proof: To establish this result, it will first be shown that if matrices A, B � 0

have strictly positive diagonal elements then D = AB has the same properties. Given

that D = AB, then

dij =
n∑

k=1

aikbkj︸ ︷︷ ︸
≥0

≥ 0

dii =
n∑

k=1

aikbki = aiibii︸︷︷︸
>0

+
n∑

k=1,k 6=i

aikbki︸ ︷︷ ︸
≥0

> 0

45

which provides the necessary result. Therefore by induction, C = A1, . . . , AN � 0 and

all diagonal elements of C are strictly positive.

Theorem 2.8 Let G be any dynamic communication network, where at each time

step, G(t) is strongly connected. Then for any agent Ai and any initial estimate,

xi(0), and variance, Pi(0), the estimate, xi(t), resulting from the Modified Distributed

Kalman Consensus Algorithm, introduced in (2.8) and (2.15), converges to the true

centralized estimate, x̄, calculated using (2.6).

Proof: From Lemma 2.3, for any t, limm→∞(ΨT (t))m = evT
t , where the vt is a

column vector. Using (2.19) and Lemma 2.1, ΨT (t) is row stochastic, so for any t,

ΨT (t) is SIA (see Definition 2.3). Then from Theorem 2.7,

lim
t→∞

ΨT (1)ΨT (2) . . .ΨT (t) = evT

for some v, or equivalently,

lim
t→∞

Ψ(t)Ψ(t− 1) . . .Ψ(2)Ψ(1) = veT (2.24)

Thus if it can be shown that v � 0, then the proof of Theorem 2.8 would follow the

same steps as the proof for the time-invariant case in Theorem 2.6. To demonstrate

that v � 0, we first show that the diagonal elements of

L = lim
t→∞

ΨT (1)ΨT (2) . . .ΨT (t) (2.25)

are positive (Lii > 0, ∀i). Since, by its definition in (2.19), Ψ(t) � 0 and all the

diagonal elements of Ψ(t) are strictly positive, then C = ΨT (1)ΨT (2) . . .ΨT (t) and

consequently L in (2.25) have positive elements, Lij ≥ 0, ∀i, j, and strictly positive

diagonal elements, Lii > 0, ∀i, (see Lemma 2.4).

Also, since L = evT (see (2.24) and (2.25)), then all of the rows of L are equal

(Lji = Lii, ∀i, j). Furthermore, since Lii > 0,∀i then Lji > 0,∀i, j, which implies

that L = evT � 0 and that v � 0. The remainder of the proof then follows the same

steps as the proof for the time-invariant case in Theorem 2.6.

46

Convergence Proof for General Network Structure In this section the UDKC

is extended to be applied to the general communication networks, which means the

strong connectivity assumption is relaxed and more general assumptions are made.

Assumption 1. There exists a positive constant α such that:

(a) aii(t) ≥ α, ∀i, t.

(b) aij(t) ∈ {0} ∪ [α, 1],∀i, j, t.

(c)
∑n

j=1 aij(t) = 1,∀i, t.

Assumption 2. (connectivity) The graph (N,
⋃

s≥tE(s)) is strongly connected.

This assumption says that the union of the graphs from anytime to infinity is strongly

connected, which means that when all the future networks are overlapped, then there

is a directed graph from any node to any other node.

Assumption 3. (bounded intercommunication interval) If i communicates

to j an infinite number of times, then there is some B such that, for all t, (i, j) ∈

E(t) ∪ E(t+ 1) ∪ · · · ∪ E(t+B − 1).

Theorem 2.9 Consider an infinite sequence of stochastic matrices A(0), A(1), . . . ,

that satisfies Assumptions 1, 2 and 3. There exists a nonnegative vector v such that,

lim
t→∞

A(t)A(t− 1)A(t− 2) . . . A(1)A(0) = evT

Proof: See the proof in Reference [20].

Theorem 2.10 Let G be any dynamic communication network that satisfies Assump-

tions 2 and 3. Then for any agent Ai and any initial estimate, xi(0), and variance,

Pi(0), the estimate, xi(t), resulting from the UDKC algorithm, introduced in (2.8)

and (2.15), converges to the true centralized estimate, x̄, calculated using (2.6).

Proof: By construction ΨT (t) has the properties of Assumption 1,

(a) ψii(t) ≥ α, ∀i, t.

(b) ψij(t) ∈ {0} ∪ [α, 1],∀i, j, t.

(c)
∑n

i=1 ψij(t) = 1,∀j, t.

47

Therefore all the assumption of theorem 2.9 are satisfied and therefore:

lim
t→∞

ΨT (1)ΨT (2)ΨT (3) . . .ΨT (t) = evT

and therefore

lim
t→∞

Ψ(t)Ψ(t− 1)Ψ(t− 2) . . .Ψ(1) = veT

The rest of the proof follows the proof of theorem 2.6.

2.5 Conclusions

The performance of the Kalman Consensus Algorithm was investigated for a team

of agents with static data. It was shown that, although this algorithm converges for

the general case of strongly connected communication networks, it can result in a

biased estimate when the outflow of the agents is not equal. An extension to this

algorithm was then presented which was shown in simulations to converge to the

true centralized estimate for general strongly connected networks. This algorithm

was further proved to converge to an unbiased estimate for both static and dynamic

communication networks.

48

Chapter 3

Robust Decentralized

Task Assignment

3.1 Introduction

To ensure scalability and flexibility of high-level control systems, various decentralized

architectures have been developed for the task assignment process [10, 23, 24, 41].

Within some decentralized frameworks (e.g., implicit coordination), each vehicle de-

termines its own mission by simultaneously choosing tasks for all vehicles in the fleet

using a centralized planning algorithm [25] and then executing its own plan. To ensure

consistency, information is shared to update the situational awareness (SA) [8, 59, 67].

Note that the list of vehicles included in this calculation could be severely constrained

to reduce the computation/communication required to plan for all other vehicles.

Hierarchic approaches typically assume the formation of sub-teams that use lo-

cally dense communication networks to share information (states, measurements, and

plans). Communication between sub-teams would be limited, although it is assumed

to be available if necessary to exchange resources. To maintain flexibility, the sub-

teams are assumed to be “dynamic” and tasks can be assigned to other sub-teams by

the scheduling algorithm. These two approaches reduce the reliance on a central plan-

ner system, thereby increasing the rate that the planning system can react to pop-up

threats and/or targets of opportunity, increasing the robustness to failure, and en-

49

suring that the control system degrades gracefully. However, it is essential that these

decentralized control decisions be well coordinated to maintain good overall perfor-

mance. A key problem is that achieving tight coordination typically requires that the

vehicles exchange large quantities of information about the environment, their current

states, and their future intentions. Communication on this scale will not always be

possible and it also increases the visibility of the vehicles to threats.

Constraining the communication limits situational awareness, which raises two

key issues: first, that decisions must be made based on incomplete information and

second, that information may be inconsistent across the fleet, potentially leading

to a less cooperative behavior. Thus, one of the primary challenges is that these

high-level algorithms must be modified to make them much less reliant on having

“perfect, global” situational awareness while still obtaining reasonable performance.

For example, a UAV may be uncertain of the distant terrain but able to plan anyway,

since another UAV has greater awareness of that region and will be responsible for

tasks within it. While it is intuitive that such a scheme could perform very well

with limited communication and global awareness, the exact nature of the resulting

performance degradation is not well understood. This chapter will investigate this

question and tackle the underlying problem of algorithmically identifying the relative

significance of information.

Another challenging problem of the decentralized planning is dealing with uncer-

tainty in the vehicles’ SA, and it is made even harder when each vehicle has limited

knowledge of the SA of the other vehicles in the team. This uncertainty can be re-

duced to some extent by communicating to share information. Important questions

here are to determine which vehicles to communicate with, what data to exchange,

and how to balance the effort between communicating input data (SA) or output data

(control plans). These questions are driven by the conjecture, based on observations,

that much of the information that could be exchanged does result in small changes in

the control solution, but does not significantly impact the actual performance. The

goal is to avoid this type of inefficiency and focus on only exchanging the data that

will have the largest impact on the performance of the closed-loop system. Ref. [34]

50

Figure 3.1: Implicit coordination approach using information consensus followed by
independent planning.

Figure 3.2: Robust Decentralized Task Assignment algorithm that adds an additional
round of communication during the plan consensus phase.

investigates a similar reduction in the information flow using channel filters for de-

centralized estimation. Our problem is very similar, but based on the observation

above, a more control-centric view of the information exchange must be developed

to establish what information will have the largest impact on the closed-loop perfor-

mance.

3.2 Implicit Coordination Algorithm

This section discusses the implicit coordination method and points out some of its

shortcomings. A new methodology is further developed to overcome these shortcom-

ings.

The idea of implicit coordination is to replicate the centralized assignment in each

UAV [23]. In this method, each UAV plans for all the UAVs in its team based on its

own information and the map of the environment. It then implements its own plan.

The premise is that UAVs have the same information and use the same algorithms

and objectives to plan. As a result, the plans are the same and similar to the case of

the centralized planning. Hence, each UAV can argue that it has the optimal, feasible

plan for itself and this plan is consistent with the other UAVs. With these assump-

tions, one can assume that there will be no conflicts between the plans executed. In

reality, however, reaching consensus and having exact information and a consistent

map of the environment is not always possible. The environment can change rapidly,

and UAVs update their map and information set, which easily causes the mismatch

in the information. UAVs must communicate in order to keep the information con-

sistent, but relying on a perfect high bandwidth communication structure makes the

implicit coordination method very fragile. Examples in Section 3.4.1 demonstrate

this fragility. Even with no limit on the amount of data that could be communicated

between UAVs, the system could still fail as a UAV loses its communication with the

team. The lack of robustness in the implicit coordination comes from the assumption

of consistent information. In order to resolve this shortcoming, an algorithm has to

produce consistent plans without the need for perfect consistency of information. In

the next section, the implicit coordination is modified to remove this constraint and

produce a robust decentralized planning algorithm for UAVs with imperfect commu-

nication structure.

3.3 Robust Decentralized Task Assignment

In the implicit coordination method (Figure 3.1), each UAV assumes that once it

generates the plan, it is consistent with the other UAVs and therefore it is executed. If

the plans are not consistent, then there could be conflicts and the overall plan might be

infeasible. Of course, further communication of the information can be performed to

develop consensus across the UAV fleet. However, with the sensitivity of the planning

process to the input data, this process can take a large number of iterations and still

does not guarantee reaching a feasible plan. To avoid the conflicting cases, the UAVs

need to communicate their plans and resolve any possible infeasibilities. This can

be interpreted as adding a “feedback loop” to the planning phase (Figure 3.2). By a

similar analogy, the implicit coordination is essentially an “open-loop” control system

51

that can be strongly influenced by exogenous disturbances. As with standard systems,

closing a feedback loop can help improve the overall performance and robustness.

The robust decentralized task assignment (RDTA) algorithm addresses this issue

by dividing the planning into two phases. The first phase is similar to the implicit

coordination method - each UAV communicates to other UAVs to reach a degree of

consensus. In the second phase, each UAV solves the assignment problem for all of

the UAVs, as is done in the centralized assignment. But instead of generating one

single optimal plan for itself, it generates a set of good (including the optimal) plans.

Each UAV then communicates its set of plans to other UAVs. After receiving the

plans from other UAVs, each UAV has a set of plans for all of the UAVs in the fleet,

which can be used to generate the best feasible plan by solving the task assignment

again. The key difference here is that the set of information that forms the basis of

the final planning is the communicated set of good plans. Therefore, all of the UAVs

have the same set of information and hence if they execute the same task assignment

algorithms (same criteria and objectives), they would all generate consistent plans

for the fleet. The following describes each phase of the RDTA in more detail.

3.3.1 Algorithm Overview

The RDTA algorithm has two major phases: (1) Information Update and (2) Plan-

ning.

Phase 1: Information Update (Reaching Consensus)

In phase 1 of the algorithm, the UAVs communicate with each other to improve the

consistency of the information. A simple consensus algorithm is used in this phase of

the algorithm to reach the required degree of consistency. If Ii(t) is the information

of UAVi at time t, then the linear discrete form of consensus filter can be written as:

Ii(t+ 1) = Ii(t) +
Nv∑
j=1

σijGij(t)(Ij(t)− Ii(t)) (3.1)

52

where G(t) represents the communication network and Gij is 1 if there is a direct com-

munication link from UAVi to UAVj and zero otherwise. σij’s are positive constants

that represent the relative confidence of UAVi to UAVj about their information.

Reaching consensus, however, is not always possible due to communication limits,

noise in the communications, and possibly slow rates of convergence in a dynamic

environment. Thus, it is likely that the second (planning) phase will have to be

executed with a limited degree of consistency in the SA. This phase is when the UAVs

calculate and implement their task plans. In the implicit coordination approach, this

is done by replicating the centralized assignment algorithm on each UAV. Given

full consensus on the SA, and using exactly the same algorithm on each UAV, this

method would create similar and non-conflicting plans for each vehicle. However, any

differences in the SA (for example, if the consensus algorithm has not yet converged),

could lead to a plan with conflicts. RDTA has a modified second phase that eliminates

these possible conflicts. Phase 2 of RDTA has two stages:

Phase 2.1: (Generating the Set of Best Plans):

The UAVs use their updated information to generate a set of ρ candidate plans. The

petal algorithm [4, 10] is a good choice for the proposed algorithm because it performs

an optimization based on pre-generated feasible plans and is modified to be used here.

In the petal algorithm, first, each UAVi creates a list of all un-ordered feasible

task combinations for every UAVj, (Pij = {p1
ij, . . . , p

kj

ij } and Pi =
⋃Nv

j=1 Pij). Next, the

length of the shortest path made up of straight line segments between the waypoints

and around obstacles is calculated for all possible order-of-arrival permutations of

each combination (these permutations are referred to as petals). The construction of

these paths can be performed extremely rapidly using graph search techniques [10].

The time of visit for each waypoint w, tw is estimated by dividing the length of the

shortest path to that waypoint by the UAV’s maximum speed. The time-discounted

score is consequently calculated for each waypoint in each petal (Sw(t) = λt Sw, λ < 1

is the discount coefficient). The time-discounted score for each petal is the sum of

the discounted score of its waypoints.

53

The algorithm produces a set ofNM petals, denoted by Pi, and a vector of sizeNM ,

denoted by Si, whose pth elements, taken together, fully describe one permutation of

waypoints for one UAV. The P pw
i entry of the set Pi is 1 if waypoint w is visited by

petal p and 0 if not. Element Sp
i of the vector Si is the time-discounted score of the

petal p. This procedure is described in detail in Ref. [10].

Once these sets are created, a mathematical method is developed for allocating the

waypoints to each UAV based on these scores and other constraints. The base of the

task allocation problem is formulated as a Multidimensional Multiple-Choice Knap-

sack Problem (MMKP) [57]. The “knapsack” in this case is the complete mission plan.

The vector corresponding to each of the NM petals makes up the multi-dimensional

weight. The “multiple-choice” comes from choosing which petal to assign to each of

the Nv different UAVs (sets). The objective is to assign one petal (element) to each

vehicle (set) that is combined into the mission plan (knapsack), such that the score

of the mission (knapsack) is maximized and the waypoints visited (weight) meet the

constraints for each of the Nw dimensions. The problem is

max
x

Ji =
∑

p∈Mi

Sp
i x

p
i

subject to ∀w ∈ W :
∑
p∈M

Pwp
i xp

i ≤ 1

∀v ∈ V :
∑

p∈Miv

xp
i = 1

(3.2)

where Mi = {1, . . . , NM} and Miv ⊆ M are the indexes of petals in Pi and Pij

respectively and W = {1, . . . , Nw} is the list of waypoints. The binary decision

variable xp
i equals 1 if petal p is selected, and 0 otherwise. The objective in this

problem formulation maximizes the sum of the scores to perform each selected petal.

The first constraint enforces that each waypoint w is visited at most once. The second

constraint prevents more than one petal being assigned to each vehicle. Solving this

MMKP selects a petal for each UAVj, (p
k∗1
ij), which is essentially a solution to the task

allocation problem. Note that this process is repeated in each UAVi and therefore

each UAVi generates plans for every single UAV in the team.

54

The selected petal for UAVi will be the first candidate plan for UAVi and is added

to the set, P ∗i , P ∗i = {pk∗1
ii }. After updating the set of feasible petals for each UAVi,

Pij =

 Pij if (i 6= j)

Pij − {p
k∗1
ij } if (i = j)

∀j (3.3)

The optimization in 3.2 and update in 3.3 are repeated ρ times to create a list of

candidate plans for UAVi, P
∗
i = {pk∗1

ii , . . . , p
k∗ρ
ii } and the scores associated with them,

S∗i = {Sk∗1
i , . . . , S

k∗q
i }. Each UAVi then communicates this set of ρ candidate plans,

P ∗i and the scores associated with these petals to all other UAVs.

Phase 2.2: (Generating the Final Feasible Plans):

Each UAVi uses the set of candidate plans from all the UAVs, P ∗j ’s and implements

the petal p∗ii that results from the optimization

max
xk

ij

Ji =
Nv∑
j=1

∑
k∈M∗

j

xk
ij.S

k
j (3.4)

subject to
∑

k∈M∗
j

xk
ij = 1;∀j (3.5)

Nv∑
j=1

∑
k∈M∗

j

xk
ijp

k
j ≤ 1 (3.6)

where M∗
j = {k∗1, . . . , k∗ρ}. Algorithm 25 presents the summary of the Robust Decen-

tralize Task Assignment algorithm. Note that this algorithm with ρ = 1 is essentially

the implicit coordination algorithm.

3.4 Analyzing the RDTA Algorithm

The RDTA algorithm has several important features that improve the performance

when compared to the implicit coordination algorithm as the benchmark. First, phase

2.2 is done based on consistent, pre-generated, plans, which ensures that there are

no conflicts in the final plans selected independently. Second, since each UAV will

55

Algorithm 1 – RDTA Algorithm

for i = 1 : Number of UAVs (Nv) do
while (Not reached the desired degree of Consensus) do

Send the current SA to neighbors,
Receive other UAVs’ SA,
Update the SA using the consensus algorithm,

end while
Set Pi = {},
for j = 1 : Number of UAVs (Nv) do

Enumerate all feasible plans for UAVj, Pij,
Calculate the time-discounted score of each plan, Sij,
Pi = Pi

⋃
Pij,

end for
Set P ∗i = {},
for k = 1 : ρ do

Solve the optimization in Eq. 3.2,
Find the optimal plan for all the UAVs, p∗ij,
Add p∗ii to the list of candidate plans, P ∗i = P ∗i

⋃
{p∗ii},

Pi = Pi − {p∗ii},
end for
Send the set of candidate plans, P ∗i to all other UAVs,
Receive other UAVs’ candidate plans,
Solve the optimization in Eq. 3.6,
Find the optimal plan for all the UAVs,
Implement the plan for UAVi, p

∗
i .

end for

execute a plan from the candidate set that it created, it is guaranteed to be feasible

for that vehicle. Furthermore, communicating a small set of candidate plans helps

overcome any residual disparity in the information at the end of phase 1 (consensus).

This improves the possibility of finding a group solution that is close to the optimal,

while avoiding the communication overload that would be associated with exchanging

all possible candidates. This section analyzes the important aspects of the RDTA

algorithm and presents simulation results to highlight the effect of various design

parameters on the performance.

56

3.4.1 Advantages of RDTA Over the Implicit Coordination

The first set of simulations were designed to demonstrate the shortcomings of the im-

plicit coordination and advantages of RDTA over the implicit coordination. A simple

example of 3 UAVs with 8 targets where each UAV is capable of visiting at most 2 tar-

gets is used. For simplicity, all targets are assigned the same score. It is also assumed

that all the UAVs are capable of visiting all the targets. In the first run, the im-

plicit coordination method is implemented. In this case, all the UAVs have consistent

information and the result is the same as the centralized assignment (Figure 3.3).

In the second run, the same algorithm is used, but the data is perturbed so that

the UAVs have inconsistent information to develop their plans. There are different

attributes of targets that can be altered such as their type, score, and position. In this

case only the positions of the targets are changed. A random number is added to the

position of targets for each UAV. The random number is generated with a uniform

distribution in the interval of [−30%,+30%] of the value of the position. Each UAV

then has its own version of the information, which is inconsistent with other UAVs.

Figure 3.4 demonstrates the result for a case when the UAVs have conflicting

assignments. Note that conflict here is defined as an assignment in which two or

more UAVs are assigned to the same target. The same problem is also solved using

the RDTA algorithm introduced in Section 3.3. Here, ρi = 2,∀i ∈ {1, 2, 3}. The result

is presented in Figure 3.5, which shows that using the RDTA for this example and

only communicating two petals per UAV can eliminate the conflicts that appeared in

the implicit coordination solution.

3.4.2 Simulation Setup

A simple scenario of 5 UAVs and 10 targets is used as the baseline for all simulations

presented in the following sections. The simulation results are typically generated

from 100 Monte Carlo simulations, with the position of the targets, (x,y) created

randomly (these random numbers are uniformly distributed in [200 400]× [200 400]).

Figure 3.6 shows a sample scenario with the optimal assignment. When comparing

57

different algorithms, the exact same problems are solved in all cases using the same

seed for the random number generators. To make the information inconsistent for

different UAVs, a random number is added to the position of each waypoint. These

random numbers are different for each target and each UAV. These random numbers

are generated with a uniform distribution in the interval of [−30%,+30%] of the

value of the position. Each UAV then has its own version of the information, which

is inconsistent with other UAVs. If Ii = [Ii(1), . . . , Ii(m)]T is the information vector

(here position of waypoints) associated with UAVi, then the level of inconsistency in

the information is quantified using the inverse Sharpe ratio, ζ defined as,

ζ =
m∑

k=1

δI(k)

µI(k)
(3.7)

where µI = [µI(1), . . . , µI(m)]T and δI = [δI(1), . . . , δI(m)]T are the mean and stan-

dard deviation of information vectors respectively. Communication between UAVs

with a consensus algorithm decreases the inconsistency in the information and con-

sequently decreases ζ. The communication noise, new measurements, and all the

exogenous disturbances tend to increase ζ. A large ζ corresponds to a significant

inconsistency in SA between the UAVs, which will impact the plans selected by each

UAV. In the case of implicit coordination, where there is no feedback in the planning

phase, this could result in conflicting plans for the team.

For most simulations, the petals are of size 2, which means that the UAV plans

have less than or equal to two waypoints. In some cases this number is increased to 3.

In a real-time implementation, these plans would be redesigned over time to ensure

that all targets/tasks are completed. The communication networks for all simulations

are generated randomly. These networks are all strongly connected networks, where

there is a communication path from every UAV to any other UAV.

3.4.3 Effect of ρ on the Conflicts

To better show the advantages of robust decentralized assignment over the implicit

coordination, Monte Carlo simulations described in Section 3.4.2 are used. Figure 3.7

58

shows the average number of conflicts versus the size of the communicated petal set, ρ.

For the case ρ = 1, on average 2.1 of the UAVs have conflicts with other UAVs. The

number of conflicts decreases as ρ increases and drops to zero at ρ = 7. To understand

the result of these conflicts on the overall performance of the plan, Figure 3.8 shows

the performance versus the size of the communicated petal set, ρ. Increasing ρ can

have a large impact on the performance – it is almost doubled for ρ = 7 compared to

ρ = 1, which is the implicit coordination algorithm.

3.4.4 Effect of Communication on the Two Phases of the

Algorithm

The first analysis considers the effect of communication during the two phases of the

algorithm on the performance. In the first phase, the consensus algorithm is used to

improve the consistency of the information across the UAV team. This information

is then used to produce a robust feasible plan for the fleet. To see the effect of

communication in each phase, two parameters are varied in the simulations. In the

first (consensus) phase, the convergence of the information is directly related to the

number of iterations. The amount of communication is also a linear function of the

number of iterations. Therefore, by changing the number of iterations, the amount

of information communicated in the first stage can be directly controlled.

The second important parameter is the size of the candidate plan set that is

communicated in phase 1 of the planning phase, ρ. The communication in this phase

is also a linear function of this parameter and thus can be controlled as well. Figure 3.9

shows the result of the simulations introduced in Section 3.4.2. The result shown is

the average of 100 Monte Carlo simulations in which the positions of the targets

were chosen randomly. Also the communication networks for these simulations are

randomly-generated, strongly connected networks. For each scenario, the number of

iterations in consensus phase was changed from 0 to 7 and for each case the RDTA

algorithm was applied with different values of ρ = 1, . . . , 5. In this figure, the x-

axis shows the number of iterations, the y-axis is the size of the candidate petal set

59

(communicated petal set), ρ, and the z-axis is the performance of the algorithm (total

score of the plan). Note that the performance values are normalized to be between

0 and 1, where performance of 0 means the total accumulated score by UAVs is zero

and the performance of 1 is the performance of the optimal solution. The plot clearly

shows that the performance of the algorithm increases as both parameters (number

of iterations and the size of candidate petal set) increase.

To better show the relationship between performance and the communication in

each phase, Figure 3.9 is transformed into Figure 3.10, in which the x- and y-axes are

the communication in the information (consensus) and planning phases, respectively.

Communication was measured using the following rules. In the information phase, in

each iteration, each UAV has to communicate its information about the position of all

targets to other UAVs. Assuming that the position of each target has two dimensions,

then two words of information must be communicated for each target. There are 10

targets in this example and therefore the total communication (the number of words

that all the UAVs communicate in all iterations) is

Cc = 20 · r · l (3.8)

where 20 = 2 × 10 is the number of words that each UAV communicates in each

iteration, r is the number of iterations in the consensus phase and l is the total

number of links in the network.

In the planning phase, the petals and the score of each petal must be communi-

cated. Each petal is a binary vector which can be interpreted to an integer number

and transmitted as a word. Hence for each petal, each UAV must communicate a

total of two words and therefore, in the planning phase, the total communication is:

Cp = 2 · ρ · l · q (3.9)

where the 2 is the number of words per candidate plan that UAVi has to communicate,

ρ is the size of the candidate plan sets, l is the number of links in the network, and

q is the number of iterations required for all the UAVs to receive the candidate plan

60

from any other UAV. Note that when there is no direct communication between two

UAVs, these two UAVs communicate their candidate plan sets through other UAVs

that act as relays. This is always possible since the networks are assumed to be

strongly connected. Therefore, if the shortest path from UAVi to UAVj consists of

u UAVs, then the total iterations needed for these UAVs to send their plans to each

other will be u+ 1, which is represented by parameter q in Eq. 3.9.

Figure 3.10 shows that increasing the communication in either axis (consensus or

planning phase) improves the performance. However, the results also clearly show

that communication in the planning phase is more efficient than in the information

(consensus) phase in the sense that 200 words of communication in the planning phase

have approximately the same effect on performance as 2000 words in consensus phase.

The plot also shows that to maximize the performance, some communication in both

phases is needed.

The performance curve versus the number of iterations is shown for four different

values of ρ (size of candidate plan set) in Figure 3.11. This can be thought of as

four slices of Figure 3.9. In this figure ρ = 1 corresponds to the implicit coordination

algorithm. The horizontal dashed line corresponds to 95% of the optimal performance,

and the vertical dashed lines show the number of iterations needed for each case

(different ρ) to reach the 95% limit. Note that for the implicit coordination case (ρ =

1), on average 10 iterations in consensus phase are needed to reach this performance

limit. The required number of iteration decreases to 6, 4 and 1 by increasing ρ to 2, 3

and 4 respectively. Note that only by one iteration in the consensus phase and using

RDTA with ρ = 4, can the 95% limit be reached. This figure clearly shows that the

sufficient consistency level is significantly lower for RDTA compared to the implicit

coordination algorithm.

3.4.5 Effect of Communication Structure on the Performance

The second analysis extends the previous results to communication architectures with

different network topologies. The effect of the sparsity of the communication network

on the RDTA performance is analyzed using the same simulation setup as in Sec-

61

tion 3.4.4. All the simulations considered here so far, assume that the communica-

tion network is strongly connected, which means there is a directed path from every

UAV to every other UAV. A strongly connected graph with the minimum number

of links is first created, and then additional links are added randomly to generate

communication networks with 5, 10 and 15 links. Figure 3.12 presents different net-

work topologies for a 5 node (UAVs) network. Fig. 3.12(a) shows a fully connected

network in which each UAV directly communicates with every other UAV in the

team. Fig. 3.12(b) shows a strongly connected network with the minimum number of

links (here 5). Fig. 3.12(c) shows a randomly generated strongly connected network

with 7 links and Fig. 3.12(d) shows a network that is not strongly connected (weakly

connected).

The results of these simulations are presented in Figures 3.13–3.15. The total

communication in each phase (x- and y-axes) is calculated using Eqs. 3.8, 3.9. Com-

paring the performance for these three network topologies, it is clear that much more

communication is needed for a sparse network (Fig. 3.13) to reach the same level of

performance. It is also shown that, to reach a certain level of performance, communi-

cation in the planning phase is more effective than communication in the information

consensus phase, thereby making the advantages of RDTA (and in particular commu-

nication in the planning phase) very apparent for sparse communication networks. In

the cases of limited communication bandwidth and/or constraints in communication

time, for sparse networks, the inefficiency of communicating raw information signifi-

cantly degrades the performance and communicating the processed data (candidate

plan set) in the planning phase is essential.

To further illustrate the effect of communication on improving consistency, Fig-

ure 3.16 presents the inverse Sharpe ratio, ζ, defined in (3.7) for these three commu-

nication topologies. The x-axis is the number of iterations in the consensus phase,

or the number of times that the UAVs communicate with each other, and the y-axis

is the inverse Sharpe ratio (a measure of inconsistency). The graphs clearly show

that for sparse networks, the convergence rate for the information consensus is very

low, and thus, with the same number of iterations (time spent in communication),

62

the UAVs in a sparse network will have more inconsistencies in the information. This

increased inconsistency in the data directly leads to more conflicts in the decentral-

ized assignment, thereby decreasing the team’s performance. In this case, adding the

communication during the planning phase has a large impact on the performance by

significantly reducing the effect of the residual inconsistencies in the information.

3.4.6 Effect of Algorithm Choice in the First Stage of Plan-

ning Phase

This analysis addresses the issue of the impact of the algorithm used in the first

stage of the planning. Section 3.3.1 discusses an approach that applies a centralized

scheme to create a set of “optimal, coordinated plans” for the set of candidate plans.

However, this level of sophistication (and its associated computational effort) may not

be necessary to achieve good performance. The following investigates four alternatives

for creating the candidate petals by varying the extent to which the plans account

for future time and other vehicles in the team.

A) Greedy in space and in time: This method ignores all other UAVs in its

task selection (uncoordinated). It is also greedy in time since it only assigns

the tasks one at a time.

B) Greedy in space (uncoordinated petal): This method is similar to the petal

algorithm, since it bundles the tasks and plans using these petals. However, this

algorithm only generates petals for the planning UAV, selecting the petals with

the highest score without any regard to the other UAVs (uncoordinated).

C) Greedy in time, non-greedy in space (coordinated): In this algorithm

tasks are selected one at a time and added to the path (greedy in time), but

the choices of all UAVs are considered in selecting these tasks. Therefore, each

UAV creates its petal with consideration of what tasks the other UAVs might

be doing (coordination).

63

D) Petal (coordinated): This algorithm is the one given in Section 3.3.1 from

the original RDTA algorithm.

The simulation from Section 3.4.2 is used to compare these four algorithms with

the goal of determining the trade-off in performance degradation versus computational

improvement. Similar to the previous setup, the inconsistency is in the position of

targets. Figures 3.17–3.19 compare the results of the four algorithms. To compare

the effect of greediness in time, the algorithms D (petal) and C (greedy in time, non-

greedy in space) are compared in Figure 3.17. The z-axis in this figure is the difference

in the performance between algorithms D and C (D−C). The performances of these

two algorithms are very close, and greediness in time does not appear to have a

significant effect on the overall performance.

In Figure 3.18, the petal algorithm, D, is compared to the greedy-in-space al-

gorithm, B, (D − B). The difference in the performance is always positive, which

clearly shows the advantage of algorithm D over B and highlights the disadvantage

of poor team coordination. By accounting for the preferences of the other UAVs in

selecting the candidate petals, in algorithm D each UAV can increase the probability

of finding a non-conflicting plan with good performance in the second stage of the

planning phase. These results show that if the coordination is ignored in the first

stage of planning, it cannot be recovered in the second stage, and although the fi-

nal plan is non-conflicting, it might not assign some UAVs to any targets to avoid

conflicts. Figure 3.19 compares algorithms C and A, (C − A), and confirms that

coordination with teammates is a bigger driver of performance than planning further

into the future.

Table 3.1: Comparing the results of different algorithms

Algorithm A B C D
Avg. Performance (normalized) 0.36 0.42 0.99 1.0
Avg. Computation Time (normalized) 0.20 0.22 0.93 1.0

64

Table 3.1 summarizes the performance and computation time of these four al-

gorithms. The numbers here are normalized by the maximum. The results clearly

show the advantage of having coordination in the first stage of planning (algorithms

C and D). The performances of these two algorithms are significantly better than

the uncoordinated algorithms, but at the same time, the computation times for these

two algorithms (C and D) are significantly higher than for algorithms A and B. The

decision on which algorithm to use will be problem specific. In the cases where longer

computation time of the coordinated algorithms is acceptable, C and D would be the

better choice. But in a case where the computation time is constrained, algorithms

A and B would have to be investigated.

3.5 Performance Improvements

This section presents two extensions to the original RDTA algorithm that are intro-

duced to improve the performance of the algorithm. These modifications are in the

petal selection in the first stage of the planning phase. In stage 2 of the planning

phase, the UAVs create the final non-conflicting plan based on the candidate plan set.

The performance of the final plan strongly depends on the quality of these candidate

plans. For instance, if the algorithm cannot create a non-conflicting plan in which all

UAVs are assigned to targets, it will avoid conflicts by not assigning one or more of

the UAVs to any targets. Although this plan is the optimal plan given the candidate

plan set, the performance might be quite poor because it is underutilizing the UAV

team.

In the original RDTA algorithm, the selected ρ petals in stage one of the planning

phase (phase 2.1) are the best petals for that specific UAV and therefore can be

very similar in the sense that they have common targets/waypoints. In the case

of inconsistent information between the UAVs, this similarity in the petals reduces

the possibility of finding a feasible assignment where all UAVs can be assigned to

their maximum number of targets, and therefore has the potential of decreasing the

expected performance of the team. Thus the objective is to find an alternative method

65

to choose these petals in the first stage of the planning phase in order to increase the

possibility of having a feasible plan (plan with no conflicts) in the second stage.

In particular, to reduce the potential of conflicts in the set of candidate plans, the

communicated candidate plan sets must include a very diverse set of targets. Two

approaches are presented and compared in the following. The first modification (A) is

intuitively appealing, but is shown to actually decrease the performance. The second

modification (B) improves the performance over the nominal algorithm.

Modification A

In this modification, when a petal pk∗
ii is selected and added to petal list P ∗i for UAVi,

then all of the remaining petals in Pii that have common waypoints with the selected

petal are penalized. Penalizing the score of petals that are similar to the petals that

are already added to the candidate plan set (have common targets) improves the

chance that the petals with a lower score that are not similar to the selected petals

will be selected. This algorithm will avoid creating a candidate plan set that includes

a set of petals with high scores, but very similar set of targets. For example, suppose

that pk∗
ii contains waypoint w, then any petal in the Pii that also contains w gets

penalized,

If (w ∈ pk∗

ii & w ∈ pk
ii) ⇒ sk

ii = sk
ii − δ, ∀pk

ii ∈ Pii

where δ is the penalty factor. To create the next petal for the candidate petal set,

the new sets of petals with adjusted scores (penalized) are used in the optimization.

Since the petals that are similar to the ones already selected are penalized, the new

selected petals tend to be different to those already selected, which leads to a more

diverse final petal set.

Modification B

This approach uses the same penalty technique, but applies it to the petals associated

with the planning UAVi and all other UAVs. For example, consider the optimization

by UAVi, which selects a set of petals for all UAVs, {pk∗
i1 , . . . , p

k∗
ii , . . . , p

k∗
iNv
}. In modifi-

66

cation A, only petals in Pii that were similar to pk
ii were penalized, but in modification

B, this penalty is applied to all petals for all UAVs: ∀j ∈ 1, . . . , Nv

If (w ∈ pk∗

ij & w ∈ pk
ij) ⇒ sk

ij = sk
ij − δ, ∀pk

ij ∈ Pij

The same simulation as before is used to compare the impact of these modifica-

tions on the performance. In these simulations, however, the effect of consensus is

not important and therefore is omitted. Figures 3.20 and 3.21 show the results for

two sets of Monte Carlo simulations. These figures show the performance of each

algorithm (original, Modifications A and B) for different sizes of the candidate plan

set. Figure 3.20 is the result of the base case of 5 UAVs and 10 targets and petal size

of 2. Figure 3.21 presents the same results for a scenario of 4 UAVs, 7 targets with

a petal size of 3. The results clearly show that in modification B, the performance

of the algorithm is improved by increasing the diversity and spanning a wider range

of waypoints in the candidate plan sets. The advantage of this modification over the

original RDTA is more obvious in Figure 3.21.

3.6 Hardware-In-the-Loop Simulations

The main objective of Hardware-in-the-loop simulation (HILsim) is to demonstrate

the capability of the RDTA architecture in a high fidelity environment. Figure 3.22

shows the architecture that is used in these experiments. In this setup, the commer-

cially available autopilot from CloudCap Technology receives waypoint commands

from the on-board planning module (OPM) and sends the control inputs to a PC

simulating vehicle dynamics. The autopilot measures the vehicle states, as generated

by the HIL Simulation PC, uses them for flight control, and also routes them to the

OPM as it would in flight. Finally, the states are downlinked to the ground station

for the operator to monitor them.

Figure 3.23 is a picture of the HILsim setup. Hardware sufficient to emulate six

vehicles resides at MIT. Figure 3.23 shows a simulation with a team of three UAVs.

67

For this setup, a total of three avionics boxes and eight laptop computers makes up

the simulation:

• On the left, a single laptop acts as the central ground station for all of the UAVs;

it runs the Piccolo avionics monitoring software and the Mission Manager GUI.

• Immediately to the right of the ground station is the rack of Piccolo avionics

systems. These avionics boxes are given simulated sensor data through CAN

bus connections to the environment simulation computers (next item).

• On the top shelf of the bench, three small laptops run the environment simula-

tions and emulate the sensors on board the Piccolo avionics.

• On the bottom shelf, three larger laptops run the on-board software, as well as

the CPLEX installations needed to solve the planning optimization. These com-

puters communicate with their respective Piccolo avionics through a serial port

(shown on Figure 3.24). The only difference between this setup (Figure 3.23)

and the one in Figure 3.24 is that the wireless connection has been replaced by

a hard line.

• The fourth laptop on the bench acts as the network emulator server. The three

OPMs are interconnected via a TCP/IP router, and all messages between the

OPMs are mediated by a wireless network emulator.

We emphasize that this is a true distributed task assignment environment in that:

• The RDTA algorithms are being executed on separate OPM / laptops.

• Each OPM is getting its information from a separate Piccolo computer; and

• All communication between the OPMs is mediated by the wireless network

emulator.

The RDTA process has been implemented within the dynamic network, and var-

ious tests have been performed. Figure ?? shows a simulation with 3 UAVs and 4

68

targets, where each UAV can only visit up to 2 targets at each assignment. Assign-

ments are made every minute and the simulation shown was run for 400 seconds.

The UAVs start at the center of their respective search areas. Each UAV has perfect

knowledge of its own position and communicates it to the other UAVs periodically.

On the other hand, the targets’ positions are not known precisely and are estimated

by distributed Kalman Consensus Algorithm. On each UAV, each target estimate at

time t − 1 is propagated, updated with the available measurements of the target’s

positions, communicated to the other UAVs, and averaged with the recently received

estimates from the other UAVs with coefficients that depend on the estimates’ co-

variance, to produce the target’s positions estimate at time t. The measurements

can only take place if the UAV is within a certain range of the target (here 400 m).

For the simulation shown in Figure ??, each UAV is typically able to detect between

2 and 4 targets at all times. To avoid overloading the communication network, the

consensus phase in which the UAVs share their estimates only takes place during the

last 30 seconds before a new assignment is made. The appropriate (typically nearest)

UAV visits a target track when it has not been visited for a long period of time.

If the UAV has been assigned 2 targets, it will track the first target for a specified

period of time before it starts flying towards the second one. If all targets have been

visited recently, the UAVs return to their search zones. In Figure ?? (b), the search

mission is executed in parallel to the tracking tasks, and by the end of the simulation,

50–100% of the search has been performed, while the target tracks are updated on a

regular basis.

3.7 Conclusions

The success of an implicit coordination approach in which the central assignment

algorithm is replicated on each UAV strongly depends on the assumption that all

UAVs have the same situational awareness. The examples showed that this consen-

sus is necessary, but potentially time consuming. This chapter presented an extension

of the basic implicit coordination approach that assumes some degree of data syn-

chronization, but adds a second planning step based on shared planning data. The

resulting Robust Decentralized Task Assignment method uses these shared candidate

plans to overcome any residual disparity in the information at the end of the (possi-

bly truncated) consensus stage. The simulations demonstrated the advantages of this

new method in generating feasible plans that reduced the conflicts in the assignments

and improved the performance compared to implicit coordination.

Further results demonstrated the effect of communication on the performance of

assignment in different stages of the planning. The performance of the RDTA algo-

rithm for different communication network topologies was also analyzed and it was

shown that the communication during the planning phase introduced in this new

technique is crucial to achieve high performance. This is especially true for sparse

communication networks where the slow convergence of the information consensus

results in decentralized activity planning based on inconsistent data. To analyze the

sensitivity of the overall performance to the candidate plan set, four selection algo-

rithms are presented. A comparison of the performance for these algorithms clearly

shows the importance of accounting for the potential actions of other UAVs in the se-

lection process. A modification of the original candidate plan selection algorithm was

also presented to further improve the overall performance by increasing the robustness

to inconsistencies in the information across the team.

69

Figure 3.3: Optimal Plan resulting from consistent information.

Figure 3.4: Plan with conflicts resulting from inconsistent information.

Figure 3.5: Plan with inconsistent information. No conflict result from RDTA.

Figure 3.6: Optimal plan for the scenario of 5 UAVs and 10 targets.

Figure 3.7: Effect of communication in the planning phase (closing the loop in the
planning phase) on the reduction of conflicts.

Figure 3.8: Effect of communication in the planning phase (closing the loop in the
planning phase) on the performance.

Figure 3.9: Effect of two important parameters (iterations for consensus and size of
candidate petal set) on the performance.

Figure 3.10: Effect on performance of communication in the two phases of algorithm
(consensus and loop closure in the planning).

Figure 3.11: Performance versus the number of iterations for different values of ρ.

Figure 3.12: Demonstration of the different network connection topologies.

Figure 3.13: Strongly connected communication network with 5 unidirectional links.

Figure 3.14: Strongly connected communication network with 10 unidirectional links.

Figure 3.15: Strongly connected communication network with 15 unidirectional links.

Figure 3.16: Comparing convergence rate of information in the consensus phase for 3
different network topologies.

Figure 3.17: Compare algorithms D and C to show effect of greediness in time. z-axis
is difference in performance D − C.

Figure 3.18: Compare algorithms D and B to show effect of coordination. z-axis is
difference in performance D −B.

Figure 3.19: Compare algorithms C and A to show effect of coordination. z-axis is
difference in performance C − A.

Figure 3.20: Comparing the performance of the original RDTA with its two modifi-
cations for a case of 5 UAVs and 10 targets.

Figure 3.21: Comparing the performance of the original RDTA with its two modifi-
cations for a case of 4 UAVs and 7 targets.

70

Chapter 4

Decentralized Auction-Based

Task Assignment

4.1 Introduction

Centralized algorithms are usually easy to implement and the optimal answer for

many problems can be produced if enough computation power is available. Many

centralized algorithms have been proposed over the years to solve the task assign-

ment problem [2, 10, 22, 27, 52, 72]. A centralized algorithm usually requires the

planner to gather the information from all the agents and to plan based on the aggre-

gated information. This requires a communication structure that allows continuous

transmission of a massive amount of data [4, 5]. Each agent also needs to be in con-

tinuous contact with the central planner to send new information and receive a new

assignment (a full handshaking structure). This usually requires a wide bandwidth

communication structure that might not always be possible.

Besides the communication bandwidth limits that may prohibit the use of a cen-

tralized planning algorithm, the response time can also be an issue. In many planning

problems, one of the objectives or constraints is the planning time or the response

time to new discoveries. The limited bandwidth of the communication network along

with the large amount of data that needs to be sent to the central planner results in

long planning times and consequently long response times.

73

Figure 3.22: Hardware-in-the-loop simulation architecture with communication emu-
lator.

Figure 3.23: Hardware-in-the-loop simulation setup.

Another limiting factor of the centralized algorithms is its computation require-

ment, which might be impractical. Since the optimization problem of the interest

usually grows (faster than linear) with the number of agents, the centralized algo-

rithms do not scale well. Given these limitations, many researchers have investigated

decentralized and/or distributed planning [21, 23, 25, 26, 29, 33, 48, 53, 54, 63], and

as a result many different algorithms have emerged.

Chapter 3 presented the Robust Decentralized Task Assignment (RDTA) as a

decentralized method to solve the UAV task assignment problem. The implicit co-

ordination algorithm was also presented to be used as a benchmark for evaluating

RDTA. The results showed that RDTA results in robust, conflict-free assignments

with much less communication compared to the implicit coordination algorithm. This

was achieved by effectively closing the communication loop around the planning al-

gorithm and communicating processed data instead of raw information. This enables

the algorithm to achieve good performance and robustness without the perfectly con-

sistent situational awareness, which is a requirement for the implicit coordination

algorithm.

Although the RDTA algorithm performs well with most of the communication

networks, it has a minimum requirement [4, 5]. In the second stage of the algorithm,

the set of candidate plans is transmitted to every other UAV in the team. When the

networks are not complete (a direct link from each UAV to every other UAV does not

exist), UAVs have to be able to relay the information from one neighboring UAV to

other neighboring UAVs. This requirement does not impose a major limitation and

is usually satisfied in UAV networks, but if not satisfied, it can result in significant

74

Figure 3.24: Architectures for the on-board planning module (OPM).

performance degradation of the RDTA algorithm.

The implicit coordination algorithm does not require this type of network con-

nectivity or relaying capability; however, it is very communication inefficient. In the

implicit coordination algorithm, UAVs run a consensus algorithm that is completely

decentralized. This will result in a consistent information set among all the UAVs.

This consistent information set will result in a consistent plan when all UAVs run

the same deterministic centralized task assignment algorithm onboard. Assuming

that all these consistency assumptions are met, the implicit coordination algorithm

performs well. However, reaching consistent information can be cumbersome if the

information set is large, which is usually the case for realistic size problems. Note

that this limitation was one of the motivations that led to the development of the

RDTA algorithm.

The objective of this chapter is therefore to develop a task assignment algorithm

that eliminates both limitations discussed above. It should perform the assignment in

a complete decentralized manner, where each agent is only allowed to communicate

with its neighboring agent (the agents with direct communication link) and there is

no relaying of information. At the same time it should be communication efficient,

where only necessary information is communicated.

Another class of decentralized algorithms for the task assignment problem is the

auction algorithms [14, 36, 40, 49, 65]. The basic idea in the auction assignment

algorithms is for the agents to bid on each task, and the agent with the highest bid

gets assigned to that specific task. Over the years, many different methodologies

have emerged from this basic idea to improve performance and convergence rate of

the auction algorithm. In a classic auction algorithm, one agent acts as the auctioneer

and evaluates the bids of different agents and assigns each task to the appropriate

agents. In some cases, the auctioneer is removed from the algorithm and one of the

bidders acts as the auctioneer. In general, the bids are collected and a decision is

made by looking at all the bids. This specification of the auction algorithm requires

the agents to be able to send information either to a specific agent who acts as the

auctioneer or to all other agents. This usually requires a complete communication

network (a link from any agent to every other agent) or relaying capability in the

agents.

The algorithm developed in this chapter combines the basic auction assignment

idea with the consensus algorithm idea and creates an algorithm to solve the task as-

signment problem. The resulting Auction-Based Task Assignment (ABTA) algorithm

eliminates the issues of the basic auction algorithms that were discussed above.

75

This chapter first states the task assignment problem and then proposes a new

decentralized auction-based algorithm to solve this problem. The completeness of this

algorithm is then proved and extensive simulation results are presented to compare

the performance and communication of the proposed algorithm with the benchmark.

Further modifications are presented to improve the performance of the algorithm.

Note that although this work originally was developed for the UAV task assignment

problem, the resulting algorithm can be implemented for any task assignment prob-

lem. Therefore, in the rest of the chapter, the more general word agent is used instead

of UAV.

4.2 Problem Statement

The problem is a simple task assignment problem where there are Nu agents and Nt

tasks, and there is a value associated with assigning agent i to tasks j represented by

cij. The objective is to assign at most one task to each agent in order to maximize

the overall assigned values. The centralized problem can be formulated as a simple

linear integer programming problem:

max J =
Nu∑
i=1

Nt∑
j=1

cijxij

subject to ∀i = {1, . . . , Nu} :
Nt∑
j=1

xij ≤ 1

∀j = {1, . . . , Nt} :
Nu∑
i=1

xij ≤ 1

∀j = {1, . . . , Nt},∀i = {1, . . . , Nu} : xij ∈ {0, 1}

(4.1)

Ref. [13] shows that although the variables in this problem are binary, a sim-

ple linear programming approach can result in a solution that satisfies the binary

constraints. Therefore, there is no need for using complicated integer programming

approaches such as Branch and Bound, etc. This makes the problem easy and fast

to solve for even a large number of tasks and agents when it is done in a centralized

76

fashion.

The objective here, however, is to solve this problem without a centralized planner

and by distributing the planning over the agents. Suppose that agents are connected

through a communication network G(t) with associated adjacency matrix G(t), where

Gik(t) = 1 if there is a communication link from agent i to agent k (i is a neighbor of

k), and Gik(t) = 0 otherwise. The idea is for the agents to communicate with their

neighbors to create complete conflict-free assignment with the defined objective. It

means that either all the agents or all the tasks (whichever is smaller) are assigned

and the constraints in Eq. 4.1 are satisfied (no conflicts).

4.3 The New Decentralized Approach

The basic idea is for each agent to act in a greedy way and choose the best task

for itself. It then communicates with its neighbors to see if it is the best agent to

be assigned to that specific task. If by communicating with the neighbors it finds

out that there is another agent that can achieve a better value by being assigned to

this specific task, it discards the task and assigns the next best task to itself. This

is very similar to the auction algorithm idea that is used in the literature. In the

Auction algorithm, all the agents bid on each task and the one with the highest bid

gets assigned to the task.

The algorithm that is proposed here combines the ideas in the auction algorithms

and the consensus algorithm. In words, each agent selects the best task for itself with

all the information that it has from other agents. It then exchanges information with

its neighbors and adjusts its assignment based on what it receives. The assumption

is that even though the communication network is not fully connected at every time

step, the union of the communication networks over a certain period of time is strongly

connected, and therefore the information from every agent will eventually reach every

other agent.

77

4.3.1 Algorithm Development

In the following, the new decentralized Auction-Based Task Assignment (ABTA)

algorithm is formulated. We introduce two variables, x, y as follows: xij(t) = 1 if task

j is assigned to agent i at time t, and is equal to zero otherwise. The variable yij(t)

is agent i’s knowledge of what is achieved by executing task j. This value is a local

estimate of the object price in the auction algorithms. The difference in this case is

that this price could be different for each agent, whereas in the auction algorithms

the agents all have the same price for any given object at any given iteration. In a

sense, yij is the local price for object j.

Each iteration has two stages. In stage one of the algorithm, each agent i looks

at xij’s and if xij = 0 : ∀j (no task is assigned to i) then it chooses a task j (if there

is any task available) and assigns it to itself (xij = 1, yij = cij). For stage one at

iteration t, the algorithm is written as follows:

Stage 1:

1: ∀i ∈ {1, . . . , Nu}
2: if

∑
j xij(t− 1) = 0 then

3: Dij = [cij > yij(t− 1)], ∀j ∈ {1, . . . , Nt}
4: J = arg maxj Dij (cij − yij(t− 1))
5: xiJ(t) = 1
6: yiJ(t) = ciJ
7: end if

Description: Each agent i ∈ {1, . . . , Nu} checks to see if it is assigned to any task

or not (line 2). If it is assigned then it goes to stage 2 of the algorithm as described

below. If not, it compares its own value for each task j, cij to the current local price

(value) of task j, yij(t) and creates a vector D, with elements Dij = 1 if cij > yij

and 0 otherwise (line 3). In line 4, the agent finds the task j with Dij = 1 and also

improves the overall objective the most (i.e. where cij − yij is maximum). It then

assigns this task to itself (line 5) and updates the price for this task (line 6).

Stage two of the algorithm is the conflict resolution. In stage two, at iteration t

78

for agent i and task j:

yij(t) = max
k
Gik(t)ykj(t) (4.2)

Kij = arg max
k
Gik(t)ykj(t) (4.3)

xij(t) =

 0 if Kij 6= i

xij(t) otherwise
(4.4)

Description: Each agent i receives the prices ykj for every task j from all its

neighbors k, (Gik(t) = 1). It then updates yij with the maximum of these values

(yij, ykj : Gik = 1)(Eq. 4.2). If the maximum price was its own bid, then nothing

changes, but if the maximum price belonged to a neighbor, then the agent sets xij = 0,

which means that agent i is outbid for this task (Eqs. 4.3, 4.4). Note that stages one

and two are iterated until all the tasks or agents are assigned.

The first stage of the algorithm is essentially the bidding process of the auction

algorithm. Each agent looks at the previous prices by other agents (yij) and its own

task values (cij) and decides which task to bid on. The primary objective for the

agent is to achieve the highest value by visiting its one task, which means bidding

on the task with the highest value cij, but it also needs to consider previous bids of

other agents (or the price of the task) yij. Therefore, it only looks at the tasks with

cij > yij and finds the maximum between them and bids on that task. The strategy

is to iterate between stages 1 and 2 to create the desired solution.

The following section proves the convergence of the ABTA algorithm to a complete

conflict-free assignment. Simulation results are then presented to analyze different

aspects of the algorithm and to compare its performance with the benchmark cen-

tralized algorithms.

4.3.2 Proof of Convergence

This section gives a proof that the ABTA algorithm converges to a complete conflict-

free assignment. This means that if Nu ≤ Nt then all the agents are assigned to one

and only one task, and each task is assigned to at most one agent. If Nu ≥ Nt, then

79

each task is assigned to one and only one agent, and each agent is assigned at most to

one task. In other words, the constraints of the optimization in Eq. 4.1 are satisfied.

For simplicity, assume for now that the communication network is static and

strongly connected, which will be relaxed later. With this assumption, there is a

bound B ≤ Nu where after at most B iterations information from any agent i will

have reached any other agent k. Note that the propagation of the information is

achieved using an information consensus algorithm and does not require relaying

information of one neighbor’s information to another neighbor. It is also assumed

that the agents’ values for each task are not identical cij 6= ckj,∀i 6= k. This is a

requirement for the ABTA algorithm to converge and can be ensured by adding a

very small random number to every cij.

Let I = {1, . . . , Nu} and J = {1, . . . , Nt}. At the beginning,

∃j∗, i∗ s.t. ∀i 6= i∗, j 6= j∗, ci∗j∗ > cij (4.5)

Based on stage one of the algorithm,

yi∗j∗ = ci∗j∗ , xi∗j∗ = 1.

Then, after at most B iterations,

yij∗ = ci∗j∗ ∀i ∈ I

xi∗j∗ = 1 (4.6)

xij∗ = 0 ∀i ∈ I − {i∗}

Looking at stages 1 and 2 of the algorithm it can be seen that neither xij∗ nor yij∗

will be changed in future iterations; therefore, the assignment of task j∗ will not be

changed and it can be removed from the task list, J = J − {j∗}. Also, since agent

i∗ is assigned and its assignment does not change, it can be removed from the list of

agents I = I − {i∗}. With the updated I and J , there are two possibilities:

80

1. ∃j∗, i∗ s.t. ∀i ∈ I, i 6= i∗, ∀j ∈ J, j 6= j∗; ci∗j∗ > cij & yi∗j∗ = ci∗j∗

2. ∃j∗, i∗ s.t. ∀i ∈ I, i 6= i∗, ∀j ∈ J, j 6= j∗; ci∗j∗ > cij & yi∗j∗ < ci∗j∗

In case 1, xi∗j∗ = 1. For case 2, in stage one of the algorithm again,

xi∗j∗ = 1, yi∗j∗ = ci∗j∗ (4.7)

Now for both cases 1 and 2, the same argument as before can be made and

yij∗ = ci∗j∗

xi∗j∗ = 1 (4.8)

xij∗ = 0 i 6= i∗

After repeating this process for the lesser of Nu and Nt times, either all the agents or

all the tasks are assigned.

So far, it is shown that after a finite number of iterations, the algorithm terminates

with a complete assignment, where either every agent is assigned to a task or every

task is assigned to an agent, depending on the relationship between Nu and Nt. Now

we show that at termination, each task is assigned to at most one agent and each

agent is assigned to at most one task.

Recall the assumption that the cij’s are different. Thus, if there are two agents

i and k for which xij = xkj = 1 and cij > ckj, then after at most B iterations, ykj

converges to cij, for which xkj = 0. Thus, there can not be any task j that is assigned

to two agents or xij = xkj = 1, which means that each task is assigned to at most

one agent. For the second problem, since the assignment of agents to tasks is only

done in stage one and in this stage each agent is only assigned to one task, the result

follows by construction.

This proof was given for static and strongly connected networks, but it can easily

be extended to a more general class of networks. For this proof to stand for dynamic

networks, the following assumption needs to be made about the communication net-

work.

81

Assumption. (bounded intercommunication interval) If i communicates

to j an infinite number of times, then there is some B such that, for all t, (i, j) ∈

E(t) ∪ E(t+ 1) ∪ · · · ∪ E(t+B − 1).

With this assumption, if B in the proof is replaced with a new bound B ≤

B · Nu, the rest of the proof follows and therefore the algorithm is complete for any

communication network that satisfied the above assumption.

4.4 Simulation Results

The following analyses are presented to demonstrate different properties of the ABTA

algorithm and compare them with the benchmark.

4.4.1 Performance Analysis

Monte Carlo simulations are used to analyze the performance of the ABTA algorithm.

In these simulations, the communication network is randomly generated at each time

step. The task values cij are also drawn randomly from the uniformly distributed set

[1, 100] . The ABTA algorithm and the optimal centralized algorithm are then used

to solve these randomly generated problems. The comparison is made for different

numbers of tasks and different numbers of agents.

Figure 4.1 shows the result of these simulations. The x- and y-axes are the number

of agents, Nu, and the number of tasks, Nt, respectively. The z-axis is the percentage

deviation of the objective value from the optimal solution. Each point in this graph

is the result of 625 Monte Carlo simulations where both the task values cij’s and

networks are created randomly. The results show that the maximum deviation from

the optimal case is around 7%, which shows that the ABTA algorithm performs very

well. Note that the deviation is the highest when the number of tasks and agents is

equal, Nu = Nt. Figure 4.2 gives the diagonal slice of Figure 4.1 (Nu = Nt). This

corresponds to the worst performance of the ABTA algorithm for different numbers

of agents and tasks. This plot clearly shows the trend discussed above, wherein this

sub-optimality reaches its maximum at around Nu = Nt = 20 and drops/flattens to

82

0
10

20
30

40

0

10

20

30

40
0

1

2

3

4

5

6

7

Number of agents

Number of tasks

D
ev

ia
tio

n
fr

om
 o

pt
im

al
 (

%
)

Figure 4.1: Performance of the ABTA algorithm compared to the optimal solution
for different numbers of agents and tasks.

approximately 2% sub-optimality for larger values.

4.4.2 Communication Analysis

One alternative to the ABTA algorithm is to run consensus on the information of

each agent (its task values) and then run a centralized algorithm on each agent to

achieve the optimal solution. This is essentially the so called implicit coordination

algorithm [25]. One of the potential advantages of the ABTA algorithm to this IC is

the amount of communication and bandwidth required. Here simulations are used to

support this claim.

To make a fair comparison, two quantities are tracked. The first quantity is the

amount of information that is sent out from each agent at each iteration. Assume

that the communication is in the form of broadcast where each agent sends out its

information once and all its neighbors receive it. This assumption does not have

any effect on the comparison and is made simply to make the comparison more

straightforward. In the case that the communication is one to one (peer to peer),

then the communication has to be multiplied by each agent’s number of neighbors.

83

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Number of agents and tasks

D
ev

ia
tio

n
fr

om
 o

pt
im

al
 (

%
)

Figure 4.2: Trend of suboptimality (deviation from optimality) for different numbers
of tasks and agents (Nt = Nu).

Since in these analyses the ratio of communication for two algorithms is used, these

multiplications cancel each other and therefore have no effect on the analysis. In

the implicit coordination algorithm, agents communicate to reach consensus on the

information (here the value of each task for each agent, cij). The total number of

parameters to reach consensus on (all agents have the same value for each parameter)

is therefore Nu × Nt, which is essentially the amount of data transmitted from each

agent in each iteration. For the ABTA algorithm, however, at each iteration, the

data that is sent from each agent is yij for that specific agent, which is a total of Nt

parameters.

Figure 4.3 compares the quantity introduced above (the information out of each

agent at each iteration) for the two algorithms. The z-axis here is the ratio of this

quantity for implicit coordination (IC) to the one of the ABTA algorithm,

84

Comm. in IC

Comm. in ABTA
=
Nu ×Nt

Nt

= Nu ≥ 1

Note that this ratio is always greater than or equal to one, which shows the advan-

tage of the ABTA algorithm to the implicit coordination algorithm. This advantage

becomes more apparent and important as the number of agents increases.

Another comparison can be made for each agent’s total amount of communication

to complete the assignment. This is essentially the previously compared quantity

times the number of iterations required. The number of iterations for the implicit

coordination is the number of iterations to reach consensus on the cij’s and for the

ABTA algorithm is the number of iterations to create a conflict-free assignment. To

make this comparison, the Monte Carlo simulation of Section 4.4.1 is repeated and

the results are shown in Figure 4.4. Similar to Figure 4.3, here the z-axis is the ratio

of total communication (total number of bytes) for the implicit coordination to the

ABTA algorithm.

Figure 4.4 shows that this ratio is always greater than or equal to one, which

means the amount of communication required in the implicit coordination is always

greater that the one in the ABTA algorithm. It also shows that this ratio increases

with the number of agents.

To see the trend of the total communication ratio shown in Figure 4.4, the sim-

ulations were run for larger fleet sizes and the results are shown in Figure 4.5. In

this figure, only the cases where Nu = Nt are considered. Figure 4.5 shows that the

ratio of the total communication increases linearly with the number of agents, which

supports the previous claims. It should also be noted that the total communication

presented in these figures can be interpreted as the time to create the assignment or

the assignment time. Since the computation involved in both algorithms is negligible,

the assignment time is essentially the time spent on communicating the information.

85

0
10

20
30

40

0

10

20

30

40
0

10

20

30

40

Number of agents

Number of tasks

C
om

m
un

ic
at

io
n

ra
tio

Figure 4.3: Ratio of communication of each agent at each iteration (Implicit coordi-
nation to the ABTA algorithm).

0
10

20
30

40

0

10

20

30

40
0

10

20

30

40

50

Number of agents

Number of tasks

T
ot

al
 C

om
m

un
ic

at
io

n
ra

tio

Figure 4.4: Ratio of total communication of each agent (Implicit coordination to the
ABTA algorithm).

86

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Number of agents and tasks

T
ot

al
 C

om
m

un
ic

at
io

n
ra

tio

Figure 4.5: Trend of total communication ratio for different numbers of tasks and
agents.

4.4.3 Effect of Network Sparsity

In this example the effect of the communication network and the degree of its connec-

tivity on the performance and communication of the ABTA algorithm is analyzed.

A measure of sparsity (or connectivity) of a network of Nu agents is the number of

non-zero elements of the adjacency matrix of the communication network, G. This

is equal to the number of links in the communication network. Here almost a similar

notion is used to quantify the degree of sparsity of the network. In the simulations,

the networks are generated randomly and thus the number of links varies from one

time step to the next. Therefore, in order to quantify the sparsity, instead of using

the number of links, the average number of links over all the iterations (time steps)

is used. In the Monte Carlo simulations, in order to create a random network at

87

iteration t, the following command is used in MATLAB,

G(t) = (rand(Nu) ≥ Threshold)

In this case, the value of 0 ≤ Threshold < 1 represents the average ratio of the

number of zeros to the number of ones in the adjacency matrix G and is used in

our analysis to quantify the sparsity of the communication network. The higher the

Threshold the higher the ratio of zeros to ones and therefore the more sparse is the

communication network.

In the set of simulations for this example, the number of tasks is set to Nt = 15

and the number of agents is changed from Nu = 1 to Nu = 30. The degree of sparsity

is also changed from Threshold = 0 (fully connected) to Threshold = 0.9 (very

sparse).

Figures 4.6 and 4.7 show the performance and communication results respectively.

Similar to the previous figures, Figure 4.6 shows the percentage of performance devi-

ation from optimal for the different cases. Here, the x-axis is the number of agents

and the y-axis is the measure of sparsity defined above (Threshold). The figure

shows that the performance of the algorithm does not change significantly with the

sparsity. This is because the sparse communication network requires more iterations

for the information to propagate, which does not affect the performance of the ABTA

algorithm.

The amount of communication, however, changes significantly with the sparsity of

the communication network. For more sparse communication networks, the number

of iterations in the implicit coordination to reach consensus as well as the number of

iterations in the ABTA algorithm to converge to a conflict-free complete assignment

increases. Figure 4.7 shows the total communication ratio of the implicit coordination

to the ABTA algorithm. This figure does not show an obvious trend, but it shows

that this quantity is always much larger than one, which shows the communication

efficiency of the ABTA algorithm for different degrees of sparsity. Looking at slices

of the figure by keeping the number of agents fixed and varying the sparsity, it can

88

0
5

10
15

20
25

30

0

2

4

6

8

10
0

1

2

3

4

5

6

Number of agentsSparsity

D
ev

ia
tio

n
fr

om
 o

pt
im

al
 (

%
)

Figure 4.6: Performance of the ABTA algorithm for different communication networks
(different levels of sparsity).

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

Number of agentsSparsity

T
ot

al
 c

om
m

un
ic

at
io

n
ra

tio

Figure 4.7: Total communication ratio for different communication networks (different
levels of sparsity).

89

be seen that the communication ratio (advantage of ABTA over IC) increases as the

communication network becomes more sparse.

4.4.4 Effect of Prior Information

In the ABTA algorithm developed in Section 4.3, each agent selects a task for itself

based only on its own values, disregarding other agents. It then communicates its

choice with neighbors to ensure there is no conflict, and at the end reaches a conflict-

free assignment. In the case that agents have no notion of other agents’ information,

this is essentially the best that can be achieved. But in cases where agents have some

knowledge of other agents’ information, using this information might help improve

the performance and convergence rate of the algorithm.

The following presents an approach to take advantage of an agent’s knowledge of

other agents’ information. Suppose that each agent i knows exactly what value it

achieves by getting assigned to each task, cij : ∀j, but its knowledge about the values

of the tasks for other agents, ckj : k 6= i is inexact or noisy. The objective is to see

if using this noisy information improves the performance and communication of the

algorithm.

The algorithm is modified so that each agent selects its task by incorporating

the expected action of other agents. To do so, in stage one of the ABTA algorithm,

instead of being greedy and using a simple maximization, a centralized cooperative

algorithm is applied to the noisy information to select the best task for agent i. A

set of Monte Carlo simulations with the setup described in Section 4.4.1 is used here

to show the effect of this modification. In these simulations, the number of tasks is

set to Nt = 15 and the number of agents is changed from Nu = 1 to Nu = 30. Agent

i has a noisy (inaccurate) knowledge of agent k’s value ckj, k 6= i, which is defined to

be cikj. For each agent i these values are created by adding random noise to the true

value of the parameters:

cikj = ckj · (1− λr)

where r is a random number drawn from a uniform distribution in [−1, 1] and λ is

90

10 20 30
00.20.40.60.8

−1

0

1

2

3

4

5

6

Number of AgentsNoise level

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

Figure 4.8: Effect of using prior information on the performance of the assignment.
The flat surface at z = 0 is plotted to clearly show the positive and negative values.

051015202530

0

0.5

1

−80

−60

−40

−20

0

20

40

60

80

100

Noise levelNumber of agents

C
om

m
un

ic
at

io
n

Im
pr

ov
em

en
t

Figure 4.9: Effect of using prior information on the communication of the assignment.

91

a constant that sets the noise level. For instance, λ = 0.2 adds a noise with a value

in the range of [−20, 20]% to the true value. In the simulations for this example, the

value of λ was varied from λ = 0 (no noise) to λ = 1 (up to 100% noise), and the

results are shown in Figures 4.8 and 4.9.

Figure 4.8 shows the percentage improvement of the performance of the modified

cooperative algorithm compared to the original ABTA algorithm presented in Sec-

tion 4.3. As expected, for smaller values of noise the modified cooperative algorithm

helps to improve the performance while for the larger values i.e. λ = 1, this modifi-

cation makes the performance worse. Note that the noise level of λ = 0 is essentially

the optimal solution. This figure shows that if agents have relatively good informa-

tion about other agents, then using the noisy information can substantially improve

the performance. Figure 4.9 compares the total communication of the modified algo-

rithm to the original ABTA algorithm. Similar to the performance graph, by using

the modified algorithm, the communication is improved for smaller noise levels and

is worse when the noise level is high.

4.5 Shadow Prices

To further improve the performance of the ABTA algorithm and possibly the con-

vergence rate, an intuitive idea is incorporated into the algorithm through a new set

of variables that are called shadow prices, zij. The idea is that when assigning agent

i to task j, the assignment is not done selfishly and the bid of any other agent k

that already has a bid on task j is considered. since the objective is to maximize the

total value achieved by the team and not by any individual agent. Assuming that zij

represents the score that agent k, currently assigned to j, will lose if agent i takes

task j, then in order to make the decision to choose a task, agent i has to consider

both y and z.

The modified algorithm using these new variables is presented here. After the

initialization, at stage one,

92

1: ∀i ∈ {1, . . . , Nu}
2: if

∑
j xij(t− 1) = 0 then

3: Dij = cij > yij(t− 1), ∀j ∈ {1, . . . , Nt}
4: J = arg maxj Dij (yij(t− 1)− zij(t− 1))
5: MAXi = maxj Dij (yij(t− 1)− zij(t− 1))
6: if MAXi > 0 then
7: yiJ(t) = ciJ
8: xiJ(t) = 1
9: DiJ = 0;

10: MAX2i = maxj Dij (yij(t− 1)− zij(t− 1))
11: ziJ = ciJ −MAX2i

12: end if
13: end if

And the modified stage two of the algorithm will be:

yij(t) = max
k
Gik(t)ykj(t)

Kij = arg max
k
Gik(t)ykj(t)

zij(t) = zkj(t) (4.9)

xij(t) =

 0 if Kij 6= i

xij(t) otherwise

zij’s are called shadow prices since they resemble the shadow prices in linear

programming. Looking at the optimization of Eq. 4.1, a set of constraints of the form

xij ≤ 1 is implicit in this formulation. zij is the change in the value achieved by

an agent k if one of these constraints is changed from xij ≤ 1 to xij ≤ 0, which is

essentially the shadow price of this constraint.

The Monte Carlo simulations described in Section 4.4.1 are used to compare the

algorithm with shadow prices to the original ABTA algorithm. Figure 4.10 shows the

result. Here the z-axis is the percentage improvement obtained using the modified

algorithm over the original ABTA algorithm of Section 4.3.1. Note that the improve-

ment is positive for most of the cases, which shows that the modification increases

the performance of the algorithm. Although the improvements are small < 1%, note

that the maximum deviation from the optimal solution was around 7% and therefore

93

0
5

10
15

20

0

5

10

15

20
−0.2

0

0.2

0.4

0.6

0.8

Number of agents
Noise level

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

Figure 4.10: Effect of the modified algorithm (with shadow prices) on the performance
of the algorithm.

these improvements are not negligible. Also note that the maximum improvement

appears in the areas with maximum deviation from the optimal solution (Nt = Nu).

4.6 Conclusions

In this chapter some of the communication issues of the existing decentralized task

assignment algorithms were raised. We discussed that, although RDTA produces

conflict-free assignment with limited communication requirements, it requires that

agents have the capability of relaying information from one neighbor to the other

neighbors. The auction algorithms have similar limitations, where either all the agents

have to be able to communicate to a centralized auctioneer or they have to be able to

relay information. Implicit coordination does not require the relaying capability, but

94

it requires a high bandwidth and was shown to be communication inefficient. A new

Auction Based Task Assignment (ABTA) algorithm was developed in this chapter

to overcome these limitations. The algorithm uses the ideas of both consensus and

auction algorithms and creates conflict-free assignments with limited communication

and without the requirement of having relaying capabilities. The algorithm was

proved to converge to a conflict-free complete assignment. Simulation results were

also presented to further show the communication advantages of the ABTA algorithm

over the existing algorithms.

95

96

Chapter 5

Robust Filter-Embedded

Task Assignment

5.1 Introduction

Unmanned Aerial Vehicles (UAVs) of the near future will require a significant high-

level planning capability in order to successfully execute their missions without signifi-

cant human interaction. The missions envisaged are complex, often requiring multiple

heterogeneous vehicles to successfully cooperate in order to achieve the global mis-

sion objectives [22, 44, 77]. For example, in a typical cooperative search, acquisition,

and track (CSAT) mission, the planning controller must keep track of all known

and potential targets in a large area and use the available information to assign the

team of UAVs to perform the search and track tasks as efficiently and timely as pos-

sible (see [3, 8, 11, 18, 39, 71, 77, 81] and the numerous references therein). The

team of vehicles would typically be equipped with sensor payloads (e.g., video or

IR cameras) that provide information that can be used to improve the overall situa-

tional awareness (SA), such as classifying and locating true targets and rejecting false

ones. Unfortunately, imperfections in the sensor data and/or adversarial strategies

could lead to inaccurate data (wrong target location or velocity) and false conclusions

(wrong target type) that corrupt the SA. Though plagued with such uncertainties in

their SA, the vehicles nonetheless must use the information at their disposal to au-

97

tonomously develop a set of actions, whether through a centralized or decentralized

planner [5, 48, 66].

The UAV coordination problem includes several important sub-problems: deter-

mining the team composition, performing the task assignment, and UAV trajectory

optimization, which are all computationally intensive optimization problems. The

task assignment problem, which is a decision making process, is typically solved using

integer (or mixed-integer linear) programming techniques. The particular emphasis

of this chapter is on ensuring that this key part of the planning process is robust

to the uncertainty in the optimization data. As discussed, the uncertainty in this

data can come from many sources, and it is well known that it can have a significant

impact on the performance of an optimization-based planner. Mitigating the effect of

the uncertainty in this type of optimization problem has recently been addressed by

numerous researchers [12, 15, 16, 17, 46, 47, 58, 64]. For example, Ref. [12] discusses

the issue of robust feasibility of linear programs, and Ref. [17] considers the problem of

finding robust solutions to linear programs under more general norms, which extends

the research of Ref. [64]. Ref. [58] introduces general robust optimization techniques

that embed higher order statistics from the uncertainty model. Refs. [15, 16] develop

techniques that hedge against worst-case performance loss and maintain robust feasi-

bility in the presence of uncertainty in integer optimizations. Solutions are presented

with both ellipsoidal and polyhedral uncertainty sets, and the authors show that the

robust equivalent of some uncertain integer programs can be found by solving a finite

number of new deterministic integer programs. Refs. [46, 47] introduce Conditional

Value at Risk (CVaR) as a scenario-based resource allocation problems solved by gen-

erating a finite (but possibly large) number of realizations, and finding the assignment

that minimizes the conditional expectation of performance loss.

While these papers present substantial contributions to the field of robust opti-

mization, they do not fully address the problems associated with the online decision-

making problem of interest in this thesis. In particular, most of these algorithms

take a significant computation time or require generating numerous realizations of

the uncertain data, which can lead to difficulties for implementation onboard the

98

UAVs. The goal of this chapter is to develop a real-time decision-making algorithm

that both hedges against performance loss in the optimization and adapts to new

information about the environment. The typical response to a change in the SA is

to reassign the vehicles based on the most recent information. A potential problem,

however, is that errors in the sensor measurements can lead to rapid changes in the

situational awareness. Then, constant replanning by the vehicles based on this latest

SA can, in the worst case, result in paths that oscillate between targets without ever

reaching any of them, and in general can result in much longer mission times than

necessary [28, 76]. Thus the replanning process must avoid this churning, or limit

cycle, behavior to obtain good overall mission performance.

Several researchers have tackled specific aspects of combined robust planning with

approaches that mitigate churning. For example, the previous work on robustness

addresses the issue of sensitivity of decision-making algorithms to uncertainty in the

optimization parameters, but does not consider churning. Refs. [28, 76] discuss the

issue of churning, but do not explicitly account for performance robustness. Ref. [76]

investigates the impact of replanning, with the objective function being a weighted

sum of the mission goal and the difference between the previous plan and the current

one. The problem of task reassignment due to changes in the optimization has also

been addressed by Ref. [40] in their use of incremental algorithms for combinatorial

auctions. Their goal is to limit the number of changes from one iteration to the next

in order to ensure that the human operator can follow the changes. They propose

that the perturbed optimization problem should also include a term in the objective

function that penalizes changes from the nominal solution. Both Refs. [40, 76] use the

plan generated prior to the current one as a reference, but they do not directly consider

the impact of noise in the problem, nor do they develop techniques to mitigate its

effect on the replanning.

The work in Refs. [18, 19] extended a simple robustness algorithm in the liter-

ature, producing an algorithm that is as effective as more complex techniques but

significantly easier to implement, and thus is well suited for real-time implementation

in the UAV problem. Section 5.2 presents a summary of this work, which provides the

99

basis for the algorithm developed in this chapter. In Refs. [2, 3], we provided a new

algorithm that accounts for changes in the SA during replanning. Our approach to

mitigate churning is unique in that the coefficient weights that penalize changes in the

assignment are tuned online based on the previous plan changes. In this chapter, we

extend this algorithm and show that the modified algorithm demonstrates the desired

filtering behavior. Further analysis is provided to show these properties. The main

contribution of this chapter is combining these robust and adaptive approaches to

develop a fully integrated solution to the UAV task planning problem, and discussing

the interactions between the two techniques in a detailed simulation. The resulting

Robust Filter Embedded Task Assignment (RFETA) algorithm is shown to be suited

for real-time calculation and yields superior performance to using robustness or the

Filter-Embedded Task Assignment (FETA) algorithm alone.

The chapter is organized as follows. Section 5.2 addresses robust planning for the

task assignment problem and compares the performance of various algorithms. The

filter-embedded task assignment algorithm (FETA) is presented in Section 5.3. The

algorithm combining these two formulations, RFETA, is presented in Section 5.4,

followed by numerical simulations that demonstrate the benefit of the proposed for-

mulation in Section 5.5.

5.2 Planning Under Uncertainty

Planning under uncertainty has received a lot of recent attention, as it enables au-

tonomous agents, such as UAVs, to make decisions while accounting for errors in

their situational awareness. By including knowledge of the uncertainty in the plan

optimization, these robust decision making processes are more successful on average

than techniques that do not account for uncertainty. While there are many algo-

rithms that address this important problem, there are some limitations to their use

in online decision-making. For example, performance of these algorithms may require

a very large number of data realizations [46, 47], or finding the solution to numerous

deterministic problems [15], which may lead to computational delays in finding the

100

robust solution that may be unacceptable for online implementation. Hence, algo-

rithms that can embed uncertainty and plan robustly using simpler optimizations

are required for real-time UAV missions. The UAV assignment problem is formally

introduced in this section, and several approaches for planning under uncertainty are

compared in Section 5.2.1. A computationally tractable approach is then presented

in Section 5.2.2.

5.2.1 General Approaches to the UAV Assignment Problem

The UAV-target assignment problem is the allocation of vehicles to targets based

on information obtained both from prior knowledge of the value and/or distance

of the targets, as well as online observations acquired via possibly heterogeneous

sensors. The UAVs generate plans based on this knowledge of the world (situational

awareness, or SA). As their SA updates, the UAVs replan to account for the changes

in the environment. In this approach, most techniques in the literature assume that

at each planning step, the UAVs use the nominal value of parameters to create their

plans. A simple assignment problem can be written as

max
xk∈Xk

c̄Tk xk (5.1)

where c̄k is a vector of nominal scores for the N targets at time k,

c̄k = [c̄k(1), c̄k(2), . . . , c̄k(N)]T (5.2)

and xk is the vector of binary decision variables corresponding to the plan at time k,

xk = [xk(1), xk(2), . . . , xk(N)]T , xk(i) ∈ {0, 1} (5.3)

The decision variable xk(i) = 1 if target i is selected in the assignment at time k, and

xk(i) = 0 otherwise. The set Xk denotes the feasible space for xk. This space could

represent general constraints such as limits on the total number of vehicles assigned

to the mission. For example, if only M < N vehicles could be assigned to the mission,

101

such a constraint would require
∑N

i=1 xk(i) < M .

Planning with the expected scores is reasonable if this is the only information

available to the UAVs. However, it should be possible to improve the planning process

if additional statistics (such as the variance, σ2
k, of the scores) about the uncertainty

in the target score information are available to the decision-making algorithm. The

following section discusses the approach introduced in Ref. [18] for including this

additional knowledge in a variation of the Minimum Variance Assignment algorithm

developed in Ref. [74].

5.2.2 A Computationally Tractable Approach to Robust Plan-

ning

The situational awareness obtained from sensor data is typically filtered using non-

linear target tracking filters (e.g., particle filters or extended Kalman filters) and

multi-hypothesis classifiers [7]. The results are then available in the form of mean

and variance data that represent the best estimate of the target state (e.g., type,

location). For example, Ref. [18] uses classical Kalman filtering equations to update

the measurements of a static world with additional observations. The measurement

model of each agent at each time step is the observation equation

zk+1|k = Hsk + νk (5.4)

where H is a measurement matrix of the states s, which could include target location

and type/score, and νk is assumed to be a white Gaussian noise with zero mean and

covariance Rk. The observation equation is used to update the expected value of the

state at time k+ 1, given all the information at time k+ 1 (s̄k+1|k+1) and uncertainty

(Pk+1|k+1) using the following filtering equations

s̄k+1|k+1 = s̄k|k + Lk+1(zk+1|k − ẑk+1|k)

P−1
k+1|k+1 = P−1

k|k +HTR−1
k H (5.5)

102

where ẑk+1|k = E[zk+1|k] = Hs̄k and Lk+1 = Pk|kH
T (HPk|kH

T +Rk)
−1 is the Kalman

filter gain. These state estimates can then be used to predict the scores associated

with each task in the planning algorithms. In this chapter, the states used in the

filters are actually the target scores themselves.

Fundamentally, these approaches all fall into the class of techniques known as

robust optimization, where the requirement is to maximize the objective function

while taking into account the uncertainty in the optimization parameters. This form

of optimization can be interpreted as the decision-maker attempting to maximize

the reward (by maximizing over the decision variables x), while the data coefficients

c (which, in one interpretation, assumes that nature selects them) are assumed to

belong to a set C, from which they can take on their worst-case values. This problem

can be mathematically written as

min
c∈C

max
x∈X

cTk xk (5.6)

We will refer to variations of this optimization throughout the chapter as robust opti-

mization, since the goal is to maximize the objective in the presence of the uncertainty.

There are various approaches for including this uncertain information in the plan-

ning algorithms, many of which are variations of the Minimum Variance Assignment.

One example is Soyster’s method [74], which solves the following optimization

JS,k = max
xk∈Xk

(c̄k − σk)
Txk (5.7)

This formulation assigns vehicles to the targets that exhibit the highest 1-σ worst-case

score. In general, this approach may result in an extremely conservative policy, since

it is unlikely that each target will indeed achieve its worst case score. Furthermore,

unless otherwise known, it is extremely unlikely that all targets will achieve their worst

case score simultaneously. Therefore, a modification to the cost function is introduced,

allowing the operator to accept or reject the uncertainty, by introducing a parameter

(λ) that can vary the degree of uncertainty introduced in the problem [18, 19]. The

103

modified Soyster formulation then takes the form

JR,k = max
xk∈Xk

(c̄k − λσk)
Txk (5.8)

The scalar λ ≥ 0 is a tuning parameter that reflects risk aversion (or acceptance).

Note the selection of λ is critical in the success of this approach, and many ad-hoc

heuristics could be developed for particular distributions, to ensure that an appropri-

ate level of uncertainty is incorporated in the optimization. In the simplest case of

Gaussian distributed target scores, a selection of λ = 3 would guarantee that the 99%

percentile of the worst-case is accounted for in the optimization; similar percentiles

can be derived for other target score distributions. Some insight into the selection of

λ is provided later in this section.

This approach in Eq. 5.8 recovers the main attribute of the robust missions by ex-

plicitly taking into account the higher moment information contained in the variance

of the score, σ2 [19]. Note, however, that the optimization of the problem in Eq. 5.8

has essentially the same computational burden as the nominal planning approach,

so it is much simpler than the optimizations in Refs. [15, 46, 47]. Two examples are

given in Ref. [19] to present comparisons with more sophisticated robust optimization

algorithms that show that, while simpler, the modified Soyster approach can be used

to attain similar levels of performance.

The first example demonstrates numerical results of the proposed robust opti-

mization for the case of an assignment with uncertain data, and compares them to

the nominal formulation (where the target scores are replaced with the expected tar-

get scores). The simulations confirm the expectation that the robust optimization

results in a lower but more certain mission score. The modified Soyster algorithm is

also compared to a slightly more sophisticated robust algorithm known as the Condi-

tional Value at Risk (CVaR). CVaR’s performance and determination of the robust

assignment relies heavily on the total number of data realizations. That is, the user

provides the optimization algorithm with numerous instances of the uncertain data,

and the CVaR algorithm finds the optimal robust assignment given the data. The

104

Figure 5.1: Sensitivity of the robust algorithm to parameter λ. Here λ = 0 is the
nominal case.

example shows that the Modified Soyster algorithm achieves identical performance of

the CVaR algorithm.

Sensitivity to λ: A set of Monte Carlo simulations is used here to investigate

the effect of λ on the robust algorithm in Eq. 5.8. A scenario with 30 UAVs and 100

targets with nominal values drawn randomly from a uniform distribution in the range

[10, 20] is used. Each target value is assumed to be uncertain, which is modeled as

a normal probability distribution with zero mean and a random standard deviation,

which itself is drawn from a uniform distribution in the range Σ = [0, 3]. Then 5000

realizations of this scenario are considered, and for each realization, the actual target

values were taken to be the nominal value added to a random normal uncertainty

scaled by a particular realization of the standard deviation drawn from the set Σ.

Each problem is then solved using Eq. 5.8 with different values of λ. This process is

repeated for 100 different scenarios.

Figure 5.1 shows the mean and standard deviation of the objective values for

these scenarios. Note that in this figure λ = 0 recovers the nominal solution. The

results show that increasing the value of λ reduces both the average and standard

deviation of the objective value, which are consistent with the previous observations

that the robust optimization results in a lower but more certain mission score. The

plot also shows that the decrease in the standard deviation as λ is increased from

0 → 1 is more significant than the increase from 1 → 3. Analysis such as this, based

on the uncertainty model for a particular problem, can be used to investigate the

trade-off between the desired performance and confidence levels and then to choose

the λ parameter.

105

5.3 Filter-Embedded Task Assignment

The problem described in the previous section has tacitly assumed that the optimiza-

tion is generally performed only when substantial changes in the environment have

been observed (e.g., as a result of UAV loss or target re-classification). In reality,

these information updates are continuously occurring throughout the mission due to

changes in the vehicle’s SA. The typical response to a change in the SA is to reassign

the vehicles based on the most recent information. The problem of task reassignment

due to changes in the optimization has been addressed by Kastner et al. [40] in their

use of incremental algorithms for combinatorial auctions. Their goal is to limit the

number of changes from one iteration to the next in order to ensure that the human

operator can follow the changes. They propose that the perturbed optimization prob-

lem should also include a term in the objective function that penalizes changes from

the nominal solution.

The work of Tierno and Khalak [76] also investigates the impact of replanning,

with the objective function being a weighted sum of the mission goal and the difference

between the previous plan and the current one. Both of these formulations rely on the

plan generated prior to the current one as a reference, but they do not directly consider

the impact of noise in the problem, nor do they develop techniques to mitigate its

effect on the replanning.

The objective of this section is to develop a modified formulation of the task

assignment problem that mitigates the effect of noise in the SA on the solution. The

approach taken here is to perform the reassignments at the rate the information is

updated, which enables the planner to react immediately to any significant changes

that occur in the environment. Furthermore, rather than simply limiting the rate of

change of the plan, this new approach embeds a more sophisticated filtering operation

in the task assignment algorithm.

We demonstrate that this modified formulation can be interpreted as a noise

rejection algorithm that reduces the effect of the high frequency noise on the planner.

A key feature of this filter-embedded task assignment algorithm is that the coefficients

106

of the filter can be tuned online using the past information. Simulations are then

presented to demonstrate the effectiveness of this algorithm.

5.3.1 Problem Statement

Consider the target assignment problem expressed in Section 5.2.1. The targets have

nominal value c̄k, and the objective, Eq. 5.1, is to select the optimal set of targets

to visit subject to a set of constraints. From a practical standpoint, these target

values are uncertain and are likely to change throughout the course of the mission;

real-time task assignment algorithms must respond appropriately to these changes in

information.

The most straightforward technique is to immediately react to this new informa-

tion by reassigning the targets. In a deterministic sense, replanning proves to be

beneficial since the parameters in the optimization are perfectly known; in a stochas-

tic sense replanning may not be beneficial. For example, since the observations are

corrupted by sensor noise, the key issue is that replanning immediately to this new

information results in a task assignment control process with short dwell times (anal-

ogous to having a high bandwidth controller) that could simply track the sensor noise.

From the perspective of a human operator, continuous reassignment of the vehicles in

the fleet may lead to increased human errors, especially if this effect is due primarily

to the sensing noise. Furthermore, since the optimization is continuously responding

to new information, and in the worst case responding to noise, it is likely that the

assignment will change in every time step, ultimately resulting in a churning effect in

the assignment, as observed in Ref. [27].

A simple example of churning is shown in Figure 5.2, where one vehicle is assigned

to visit the target with the highest value. The original assignment of the vehicle

(starting on the left) is to visit the bottom right target. At the next time step,

due to simulated sensing noise, the assignment for the vehicle is switched to the

top right target. The vehicle changes direction towards that target, and then the

assignment switches once again. The switching throughout the course of the mission

is an exaggerated behavior of the churning phenomenon. In fact, it can be seen that

107

as the mission progresses, the vehicle is still alternating between the targets to visit,

and never converges to a fixed assignment. While this is a simplified example of

churning, it captures the notion that sensing noise alone could cause a vehicle to

switch assignments throughout a mission, reducing the overall performance.

Likely missions may involve multiple vehicles, each with unique information and

independent sensors and noise sources. It might be quite difficult to identify and

correct the churning behavior in a large fleet of UAVs. The subsequent sections

present methods of modifying the general task assignment problem to automatically

avoid this phenomenon. The following sections develop a filter for the assignment

problem that mitigates the effect of noise in the information vector (optimization

parameters) and can be tuned to capture different noise frequencies.

5.3.2 Assignment With Filtering: Formulation

In this section the concept of binary filtering is defined and then incorporated into

the assignment problem in order to mitigate the effect of environmental noise or

uncertainties. Consider the simple task assignment problem introduced in Eq. 5.1,

max
xk∈Xk

cTk xk (5.9)

The solution to this problem at any time step k is a binary vector xk of size N ,

where N is the number of targets and xk(i) is 1 if target i is selected and 0 otherwise.

With each replanning at each time step k, the values of the elements of this vector

change, which results in changes in the assignment.

A binary filter of size r is defined as a system whose binary output changes at

most with the rate of once every r time steps. Figures 5.3 shows the input and output

to two binary scalar filters with lengths r = 3, r = 5. As illustrated in Figure 5.3-top,

the input is a signal with the maximum rate of change (change at each time step).

The output is a binary signal with the maximum rate of one change every 3 steps

(Figure 5.3-middle) and every 5 steps (Figure 5.3-bottom). These figures show the

filter for a single binary value (i.e. only xk(i)), but the same idea can be extended to

108

Figure 5.2: Trajectory of a UAV under a worst-case churning effect in a simple as-
signment problem.

Figure 5.3: (top): Input to the binary filter; (middle): Filtered signal for the case
r = 3; (bottom): Filtered signal for the case r = 5.

a binary vector (i.e. xk).

Now with the simple assignment problem of Eq. 5.9, the idea is to replan for the

same system in each time step and suppress the effect of parameter noise on the

output of the system (generated plan). If the above problem (Eq. 5.9) is solved in

each iteration, the optimization parameters will be directly impacted by the noise

and the assignment can be completely different at each step. Variations in the plan

that are due to environmental noise or parameter uncertainties, as well as rapid or

large changes in the plan that are either impossible or inefficient to track, are usually

unwanted. To avoid these types of variations in the plan over time, a binary filter is

integrated into the algorithm to limit the rate of changes in the assignment problem

and suppress the effect of noise.

An assignment with filtering can be written in the following form,

yk = f(ck, xk, xk−1, . . . , xk−q, yk−1, yk−2, . . . , yk−r) (5.10)

where ck, xk, and yk are the input to the system, the current nominal (unfiltered) so-

lution, and the filtered solution respectively. Further, xk−1, . . . , xk−q are the previous

unfiltered plans and yk−1, . . . , yk−r are the previous filtered plans (previous outputs

of the system).

It should be noted that ck here is the noisy input to the system:

ck = c̃k + δck (5.11)

where δck is the additive noise to the actual value of the parameters, c̃k. Examples

of this type of noise are the effect of decoy and sensor noise.

At each time step, both filtered and unfiltered plans are generated. Figure 5.4

gives a block diagram representation of assignment with filtering. Here, FTA and

109

Figure 5.4: Block diagram representation of assignment with filtering.

UFTA represent the filtered and unfiltered task assignment algorithms, respectively,

TA represents the overall task assignment algorithm, and Z−1 represents a bank of

unit delays. UFTA is essentially the algorithm that solves the nominal problem in

Eq. 5.9. In this section, we develop an algorithm for the FTA box.

A comprehensive form of this filter can be implemented to obtain very general

filtering properties. The general form of the FETA algorithm is

max
yk

cTk yk −
r∑

l=1

(βl
k)

T (yk ⊕ yk−l) (5.12)

s.t. yk ∈ Xk

βl
k =

q∑
j=l

bljδx
l
j (5.13)

δxl
j = xk−j ⊕ xk−j+l (5.14)

where xj is the unfiltered plan at time step j, which is calculated in the UFTA box

in Figure 5.4. These values are then used in Eqs. 5.13, 5.14 to calculate β, which

is then used in the optimization represented by Eqs. 5.12, 5.13. These calculations

construct the FTA box in Figure 5.4.

The second term in the objective function (Eq. 5.12) is the penalty associated

with changes that are made in the current plan compared to the previous plans. In

contrast to existing algorithms [40], the penalty coefficients β in this approach are not

constant. In particular, these coefficients are calculated dynamically using previous

plans to selectively reject the changes associated with the high frequency noise. Note

that the high frequency noise here can be either real noise, such as sensor noise, or any

changes in the environment which either UAVs cannot respond to or it is not efficient

for them to respond to. The value r in the second part of the objective function is

the bandwidth of the binary filter incorporated into this formulation, which is shown

explicitly in Section 5.3.3. The coefficient vector βl
k specifies the penalty on the change

of each element in the assignment vector. Each element of these coefficient vectors is

a weighted summation of previous changes in the nominal plan.

110

Since the (unfiltered) plan will track environmental noise, measuring changes in

the unfiltered plan provides a good metric to identify and suppress such disturbances.

This is implemented in Eqs. 5.13 and 5.14. Here, q is the length of the window

of old information that is included in calculating the coefficients. The coefficients

blj determine the impact of changes in previous plans on the current plan. It is

usually the case that more recent changes better represent the current state of the

environment and therefore they should be be given more weight when calculating the

penalty coefficients. A good candidate for blj that satisfies this criterion is

blj =
bl

2j
(5.15)

where bl is a constant that can be set based on the problem. Eq. 5.15 generates smaller

weights for larger j, and thus attenuates the effect of the changes that happened in

the far past (larger j), compared to the more recent changes in the plan.

It should be noted here that the calculation of β (Eqs. 5.13, 5.14) is done out-

side and enters the optimization as input. This helps to keep the complexity of the

optimization problem at the same level as the nominal formulation.

5.3.3 Assignment With Filtering: Analysis

This section analyzes the filtering properties of the formulation in Eq. 5.12 and the

effect of the design parameters on the shape and the bandwidth of this filter. The

discussion in Section 5.3.2 argued that r implicitly defines the bandwidth of the filter

in the assignment formulation. The analysis presented here analyzes that relationship

in more detail.

Consider a problem with one UAV and two targets. The UAV can go to only one

target, and the objective is to maximize the score which is the value of the selected

target. The true value of the targets is chosen to be 10 but was perturbed with noise

in the range of [−1, 1]. At each time step the UAV updates its perception of target

values and replans based on the new values. To analyze the filtering properties of the

formulation, the frequency of the noise is changed from 1 to 0.125 and the response

111

Figure 5.5: Frequency response of the filter for different values of r (bandwidth).

Figure 5.6: Frequency response of the filter for different penalty coefficients, b0.

to each noise frequency is recorded. Note again that frequency of 1 means changes

that happen every time step and is the highest possible frequency, and the frequency

of 0.125 represents changes that happen at most every 8 time steps. The r was set at

different values in the algorithm, and the behavior of the filter is recorded for each.

The results are shown in Figure 5.5. The noisy input is applied to both filtered

and unfiltered assignment problems and the number of changes (the level of churning)

is calculated for both cases. The values in the y-axis show the ratio of the number

of changes in the filtered case to the one of the unfiltered case. Note that the values

here are the average of 100 Monte Carlo simulations and each simulation runs for 100

time steps. The value of 1 at a particular frequency means that all of the changes

with that frequency content would pass through the filter, while a value of 0 means

that all of the changes would be suppressed. As expected, the results clearly show the

low-pass filtering effect of the algorithm. The effect of the parameter r for tuning the

effective bandwidth of the filter is also apparent. In particular, as r increases from 1

to 5, the effective bandwidth reduces from approximately 1 to 1/5 = 0.2.

Another important parameter in the formulation of Eq. 5.12 is β, which is the

coefficient on the penalty terms and is a weighted sum of previous changes in the

nominal plans. To investigate the impact of β or blj’s on the shape of the filter,

rewrite Eq. 5.13 as

βl
k =

q∑
j=l

bljδx
l
j = b0

q∑
j=l

b̂ljδx
l
j (5.16)

Figure 5.6 shows the results with r = 3, the b̂lj fixed, while the value of b0 is changed

from 0.5 to 1.1. It should be noted that there is no pure analytical way for selecting

the b̂lj values and they are chosen by iterating over the resulting filter shape for a

given noise level. This figure clearly shows that increasing the value of b0 causes the

filter to increase the level of attenuation at the desired cut-off frequency (1/r = 0.33)

112

and leads to some further attenuation at lower frequencies.

In summary, Figures 5.5 and 5.6 indicate that r is a more effective means of

changing the cut-off frequency than changing b0, and that for a given r, b0 can be

used to tune the level of attenuation achieved at the specified cut-off frequency.

To further show the behavior of the filtering formulation (Eqs. 5.12 - 5.13), it

is simplified here to the following optimization problem, which rejects noises with

frequency 1 (this is the highest frequency, meaning that the signal can change in each

time step):

max cTk yk − (β1
k)

T (yk ⊕ yk−1) (5.17)

s.t. yk ∈ Yk

β1
k =

q∑
j=1

b1jδx
1
j (5.18)

δx1
j = xk−j ⊕ xk−j+1

This formulation is used here for a simple, but general, assignment problem and

compares the results of the unfiltered and filtered formulations. Similar to previous

examples, the objective of this problem is to choose M of N existing targets (M < N)

in order to maximize the total value of the selected mission. Each target has a value

associated with it that is affected by noise

ck = c̃k + δck (5.19)

where c̃k is the actual target value at time k and δck is the noise added to this value

(top plot of Figure 5.7). The nominal value for all targets is set to 5 and the noise

is uniformly distributed in the interval [−0.5, 0.5]. The parameter bl in Eq. 5.15 is

set to 0.6. Solving this problem for N = 4, M = 2 for 30 iterations (time steps)

results in 30 different plans that are directly affected by the noise, and Figure 5.7

shows the result of this simulation. In these figures, • represents 1 and ◦ represents 0.

Thus, targets 1 and 2 are selected in assignment 1, and targets 1 and 4 are selected in

assignment 2. Note that as the costs change in the top plot from one time period to

113

(a) Noisy
cost
co-
ef-
fi-
cients.

(b) (top):
Plans
with
no
fil-
ter;
(bot-
tom):
Fil-
tered
plan.

(c) (top):
Plan-
ning
ev-
ery
3
time
steps
(no
fil-
ter);
(bot-
tom):
Plan-
ning
ev-
ery
5
time
steps
(no
fil-
ter).

Figure 5.7: Comparing the results of a filtered and an unfiltered plan (• represents 1
and ◦ represents 0).

the next, the unfiltered plan changes as well. However, the filtered solution (bottom

plot) remains unchanged for much longer periods of time. Thus it is clear that the

unfiltered solution tracks the noise in the cost coefficients to a much greater extent

than the filtered plan. To demonstrate that the filtered plan is only rejecting the

noise, the coefficient c2 is increased by 0.7 at time step 7, and then decreased by 1.4

at time step 16. The results in Figure 5.7(b) show that the filtered plans follow these

lower frequency changes. As noted previously, one approach to mitigate the impact

of the sensing noise is to slow down the planning rate. Figure 5.7(c) shows the results

of using this method for two cases. In the top figure, the replanning is done every 3

114

time steps, and it is clear that churning still exists; it is just at a lower rate. In the

bottom figure the replanning is done every 5 time steps. In this case, the churning

effect is not apparent, but the planner’s response to the changes in the signal is slow

(at k = 16, c2 drops in value, but the planner responds to it at k = 26).

Another important issue is the lag that the binary filter implies on the assignment.

It is shown in the figure that the input signal changes at times k = 7, 16 and the

filtered assignment responds to these changes at k = 8, 17. This clearly shows a lag

of one time step, which is small compared to the lag introduced in the case where

assignment is performed every 5 time steps in order to remove the churning (Fig-

ure 5.7(c)).

5.4 Robust FETA

This section presents the new Robust Filter Embedded Task Assignment (RFETA)

algorithm, which synergistically combines the robust and FETA techniques intro-

duced in Sections 5.2 and 5.3. Recall that the goal of the robust planning algorithm

is to hedge against the uncertainty in the optimization data, and therefore takes into

account the nominal scores and uncertainty of the targets, whereas FETA is designed

to mitigate the effect of churning, while replanning with new information. While

both algorithms successfully achieve their objectives, they individually have some

limitations.

The robust planning algorithm does not explicitly consider the effects of new

information on the plan changes. It only considers the effects of uncertainty on the

overall mission planning but not on previous plan changes. Thus it is susceptible to

churning. FETA corrects the vehicle churning problem, but does not directly take

into account uncertainty in the problem. Therefore, if the measurement updates do

not occur frequently, FETA is susceptible to the same problems as nominal planning.

A new algorithm that combines the strong features of each algorithm and improves

upon their individual weaknesses is therefore of great importance. There are numerous

ways to combine the concepts of robust planning with FETA (e.g., Refs. [15, 47]),

115

but we use the approach suggested in Section 5.2, in which the nominal objective is

replaced by an uncertainty-discounted objective; namely, replacing c̄k with c̄k − λσk

will make the optimization cognizant of the impact of the uncertainty. Based on this

discussion, we propose the new optimization,

max
xk∈Xk

(c̄k − λσk)
Txk − βT

k (xk ⊕ xk−1) (5.20)

This is a direct modification of the FETA algorithm that penalizes the scores of the

individual targets by a fraction of their uncertainty, which we refer to as the RFETA

optimization. As previously introduced, the parameter λ is a tuning parameter that

varies the level of uncertainty in the optimization. A more general form of this RFETA

optimization replaces the scalar, λ, with a time-varying vector, λk,

max
xk∈Xk

(c̄k − λk · σk)
Txk − βT

k (xk ⊕ xk−1) (5.21)

where λk ·σk represents the element by element multiplication. This generalization is

useful when the desired confidence levels of each target are not equal (for example, if

the targets have different overall mission values); furthermore, the level of uncertainty,

governed by the choice of λ, may increase or decrease as other targets are discovered

or added to the mission list.

5.5 Numerical Simulations

This section presents the results of several numerical simulations that were performed

to compare the various algorithms introduced in this chapter. The first set of examples

compares RFETA with the FETA and robust algorithms graphically. The second set

of simulations uses Monte Carlo simulations to analyze the different optimizations and

compare their average performance as well as time required to achieve these levels of

performance.

116

Table 5.1: Target parameters for Section 5.5.1

Target # Score σ0 Initial Distance from UAV

1 10 2 7.62
2 10 3.5 7.62
3 10 6 6.2

Figure 5.8: Top left: Nominal planning; Top right: Nominal planning with FETA;
Bottom Left: Robust planning; Bottom Right: Robust planning with FETA.

5.5.1 Graphical Comparisons

Consider a simulation of a small environment with three targets and 1 UAV. Each

target is assumed to have a nominal score of 10, but there are different initial variances

for these scores. As shown in Table 5.1, target 1 has the lowest standard deviation,

while target 3 has the highest standard deviation.

These simulations are implemented using Receding Horizon Task Assignment

(RHTA), a task allocation algorithm introduced in Ref. [2]. This algorithm takes

into account the distance in the overall cost evaluation of each target, discounting

the target score by a quantity directly proportional to the time taken by the UAV to

reach that target, and groups together the various combinations of targets into petals.

In these simulations, the petals are of size 1 because it was assumed that the UAV can

only visit one target. At each time step, the UAV obtains a measurement as described

in Section 5.3. The results of these missions using four different algorithms (Nominal,

Robust, FETA, and RFETA) are shown in Figure 5.8. The nominal plan is shown

in the top left figure. Ignoring the uncertainty, the nominal plan sends the UAV to

the closest target, which also has the highest uncertainty, while churning. Due to the

updated information from the estimator, the UAV constantly replans and alternates

between the different targets. Without any penalty on changing the plans, the UAV

does what is optimal at each time step, thereby changing targets due to measurement

noise. In the top right corner, the churning problem is mitigated by using FETA, but

the UAV is still sent to the closest target that has the highest uncertainty.

The robust plan is shown in the figure in the bottom left corner. At each time

117

step, the measurement is used to update both the estimate and the covariance (c̄k

and Pk). The planner uses the new updated values for these quantities to update the

information and replan. Note that the robust plan sends the UAV to the targets with

the lowest uncertainty, but churns, since there is no penalty incurred for this. In the

bottom right corner, the robust plan using Eq. 5.20 (RFETA) is implemented. The

planner uses the new updated values for these quantities to update the information,

but the cost function contains a penalty term on the replanning, thereby reducing the

churning significantly. Note that the robust FETA sends the UAV to the targets with

the lowest uncertainty, with no churning. These simulations show single realizations

of the RFETA implementation; the next subsection discusses large-scale Monte Carlo

simulations that were conducted to study the performance of RFETA in greater detail.

5.5.2 Monte Carlo Simulations

Large-scale Monte Carlo simulation methods are used to evaluate and compare the

performance of the Robust FETA algorithm with the other three algorithms: Nomi-

nal, Robust and FETA. The simulation setup is similar to the previous example. In

these simulations the randomly generated parameters are the positions of the targets

and the score associated with each target. The x- and y- target positions are created

using a uniform distribution in [0, 10]. The scores are chosen randomly with normal

distribution, with a mean of 10 and standard deviation of 2, 3.5, and 6 for the three

targets, respectively. The implementation of each simulation is done similarly to the

previous example. The result shown here is created by running 100 Monte Carlo

simulations, each one created by 100 random runs.

Figure 5.9 shows the result of these simulations. The horizontal axis is the time

elapsed since the start of the simulation, while the vertical axis shows the average

accumulated score. Figure 5.10 focuses on the results after 20 time units and includes

1–σ error bars to better compare the values. The results of Figure 5.10 indicate the

following:

1. The Robust algorithm has a similar initial performance response to the nomi-

118

Figure 5.9: Result of the Monte Carlo simulation for the four algorithms.

Figure 5.10: Comparing the accumulated score and its confidence level for the four
algorithms.

nal approach, but yields a higher final accumulated value, which is consistent

with the system exhibiting some churning but making better overall planning

decisions.

2. The basic FETA algorithm yields a faster convergence to the final value than

the nominal approach, but essentially the same final value, which is consistent

with reducing the level of churning in the system but not necessarily improving

the quality of the planning decisions.

3. The RFETA algorithm exhibits the fastest convergence, the highest final value,

and the lowest standard deviation in the final values, all of which are consistent

with the new approach reducing the extent of the churning and making good

overall planning decisions.

To further compare the RFETA with the Nominal algorithm, Figure 5.11 shows

the histogram of the mission completion times for the two algorithms respectively.

These results are summarized in Table 5.2. The results show that the mission com-

pletion time for the RFETA algorithm is lower on average and it also has a smaller

standard deviation. We can see that RFETA reaches 90% of the final value much

faster than the Nominal algorithm, and its average and standard deviations of the

mission completion time are also much lower than those resulting from the Nomi-

nal algorithm. Note the similarities in mean and standard deviation of the finishing

times between the RFETA and FETA algorithms, underscoring the importance of

the FETA component in reducing the churning behavior that would otherwise plague

both the Nominal and Robust algorithms.

119

Figure 5.11: Histogram comparing the mission completion time of the Nominal and
RFETA algorithms for the Monte Carlo simulations of subsection 5.5.2.

Table 5.2: Comparison of convergence rate of the four algorithms.

Algorithm Nominal Robust FETA RFETA

Avg. of mission completion time 17.77 18.41 14.12 14.15

Std. of mission completion time 14.45 15.40 8.72 8.36

Time to 90% of final value 40 40 25 20

5.5.3 Impact of Measurement Update Rate

The previous simulations used a measurement update at each time step in the mission,

and the vehicles replanned at each time step with a new piece of information. It is,

however, unlikely that the UAVs will be able to update their information at such

rates, and it is thus desirable to investigate the effects of slower information updates

on the algorithm performance, where the information update is the rate that the UAVs

make observations on the score of the targets, and update them using, for example, a

Kalman filter. Note that even though this information update rate is reduced in the

following simulations, the replanning still occurs at each measurement update. The

key motivation behind these simulations is that by receiving information updates less

frequently, RFETA will generate robust plans over longer mission segments, while

FETA or the Nominal algorithm will not generate plans that are hedged against the

uncertainty.

In order to investigate the effect of intermittent information updates, the simu-

lations in section 5.5.2 are performed using information update every 2, 5, 7 and 10

time steps. That is, in the first set of simulations measurements are received every

∆T = 2, while in the last set of simulations they are received every ∆T = 10 steps.

Target scores and initial distances are selected randomly.

Table 5.3 shows a comparison of the finishing times for the Nominal algorithm and

RFETA. For an information update of ∆T = 5, the Nominal algorithm completes on

average in 19.1 steps, while RFETA finishes in 16.04 steps. The longer finishing time

120

Table 5.3: Comparison of finishing times for different algorithms and measurement
updates.

Algorithm Nominal Nominal RFETA RFETA
(∆T = 5) (∆T = 10) (∆T = 5) (∆T = 10)

Avg. of Finishing Time 19.1 16.8 16.04 13.9
Std. of Finishing Time 4.45 4.77 3.54 2.30

Figure 5.12: Impact on Measurement Update Time Interval (∆T) on Overall Score.
As the time between information updates increases, RFETA performs identically to
robust algorithms. A slight decrease in performance occurs with increased certainty
of this performance objective.

for the Nominal algorithm demonstrates that with slower updates, the Nominal algo-

rithm exhibits churning, while RFETA mitigates this problem, leading to a reduction

in the overall mission time by approximately 15%. By updating the information every

∆T = 10 time steps, the Nominal algorithm’s finishing time is 16.8 steps compared

to 13.9 time steps for RFETA, an overall improvement of approximately 17%. The

table shows that RFETA both reduces the mission completion time and its standard

deviation. Thus, there is a much higher probability of obtaining longer finishing times

greater than 25 steps for the Nominal algorithm than RFETA.

By updating every 2 time steps, the Nominal algorithm churns frequently in re-

sponse to the sensing noise. At each measurement update, there is no penalty on

changing the plans and there is no explicit inclusion of the uncertainty in the opti-

mization. For an increased interval of ∆T = 10 steps, the algorithm assigns the UAV

to the target with the highest realization of the score, disregarding the uncertainty

(or variance) in the score of that target. RFETA makes up for these limitations

by explicitly taking the uncertainty into account in the optimization. Furthermore,

by embedding the FETA component, there is a penalty on changing the plans too

frequently, thereby minimizing the finishing times of the mission.

Changes in the mission score of RFETA are also seen by evaluating the perfor-

mance objectives of RFETA for different ∆T values. As ∆T increases and the infor-

mation updates occur less frequently, RFETA relies on the robustness component to

121

ensure that the vehicle is assigned to target scores hedged against the uncertainty.

The simulations are evaluated by varying ∆T and maintaining the discount factor of

λ = 1 for all the N = 100 simulations, and results are shown in Figure 5.12. This

figure plots the time interval ∆T between measurements versus the time discounted

score that the vehicles obtain at the final time step in the mission. These time dis-

counted scores are calculated as Sj = cNF
(j)ςTF (j) where cNF

(j) is the realization of

the target score and TF (j) is the finishing time for simulation j. The time discounted

score is the expected value of the simulation scores,

S =
1

N

∑
j

cNF
(j)ςTF (j) (5.22)

Note that as ∆T increases, the information updates are less frequent; hence, the

covariance in the scores of the targets is not updated as frequently, and is reduced

less rapidly than with more frequent measurements. Note also that the standard

deviations of this score decrease as ∆T increases. Recall that the robust planning

techniques generally exhibit a loss in performance in exchange for higher certainty

in the performance. This figure shows that the robust component of RFETA ex-

changes this small performance loss for an increase in the certainty of obtaining this

performance objective.

5.6 Conclusions

This chapter has presented new results in the design of real-time missions that are

robust to uncertainty in the environment. The most recent literature has introduced

algorithms that are either made robust to the uncertainty in the optimization, or that

adapt to the information in the environment, but little or no literature has addressed

the combined problem of robustness and adaptiveness.

This chapter discussed three key aspects of the robust planning problem. First, it

was demonstrated that an extended version of a simple robustness algorithm in the

literature is as effective as more complex techniques. However, since it only has the

122

same computational complexity as the Nominal algorithm, it is significantly easier

to implement than the other techniques available, and thus is well-suited for real-

time implementation in the UAV problem. We also provided a new algorithm which

accounts for changes in the situational awareness during replanning. Our approach

to mitigate churning is unique in that the coefficient weights that penalize changes

in the assignment are tuned online based on previous plan changes. Finally, we

combined these robust and adaptive approaches to develop a fully integrated solution

to the UAV task planning problem, and discussed the interactions between the two

techniques in a detailed simulation. The resulting RFETA is shown to be well-suited

for real-time calculation and yields superior performance to using robustness or FETA

alone.

123

124

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Unbiased Kalman Consensus (Chapter 2)

The performance of the Kalman Consensus Algorithm was investigated for a team

of agents with static data. It was shown that, although this algorithm converges

for the general case of strongly connected communication networks, it can result

in a biased estimate when the outflow of the agents is not equal. An extension to

this algorithm was then presented which was shown in simulations to converge to

the true centralized estimate for different network structures. This algorithm was

further proved to converge to an unbiased estimate for both static and dynamic

communication networks.

Robust Decentralized Task Assignment (Chapter 3)

The success of the implicit coordination approach, in which the central assignment al-

gorithm is replicated on each UAV, strongly depends on the assumption that all UAVs

have the same situational awareness, and the examples showed that this consensus

is necessary, but potentially time consuming. This chapter presented an extension

of the basic implicit coordination approach that assumes some degree of data syn-

chronization, but adds a second planning step based on shared planning data. The

125

resulting Robust Decentralized Task Assignment method uses these shared candidate

plans to overcome any residual disparity in the information at the end of the (possi-

bly truncated) consensus stage. The simulations demonstrated the advantages of this

new method in generating feasible plans that reduced the conflicts in the assignments

and improved the performance compared to implicit coordination.

Further results demonstrated the effect of communication on the performance of

assignment in different stages of the planning. The performance of the RDTA algo-

rithm for different communication network topologies was also analyzed and it was

shown that the communication during the planning phase introduced in this new

technique is crucial to achieve high performance. This is especially true for sparse

communication networks, where the slow convergence of the information consensus

results in decentralized activity planning based on inconsistent data. To analyze the

sensitivity of the overall performance to the candidate plan set, four selection algo-

rithms were presented. A comparison of the performance for these algorithms clearly

show the importance of accounting for the potential actions of other UAVs in the se-

lection process. A modification of the original candidate plan selection algorithm was

also presented to further improve the overall performance by increasing the robustness

to inconsistencies in the information across the team.

Auction-Based Task Assignment (Chapter 4)

In this chapter some of the communication issues of the existing decentralized task

assignment algorithms were raised. It was discussed that although RDTA produces

conflict-free assignment with limited communication requirements, it requires that

agents have the capability of relaying information from one neighbor to the other

neighbors. The nominal auction algorithms have similar limitations, where either all

the agents have to be able to communicate to a centralized auctioneer or they have

to be able to relay information. Implicit coordination does not require the relaying

capability but requires a high bandwidth, and was shown to be communication in-

efficient. A new Auction-Based Task Assignment (ABTA) algorithm was developed

in this chapter to overcome these limitations. The algorithm uses the ideas of both

126

consensus and auction algorithms and creates conflict-free assignment with limited

communication and without the requirement of having relaying capabilities. The al-

gorithm was proved to converge to a conflict-free complete assignment. Simulation

results were also presented to further show the communication advantages of the

proposed algorithm over the existing algorithms.

Robust Filter-Embedded Task Assignment (Chapter 5)

This chapter presented new results in the design of real-time missions that are robust

to the uncertainty in the environment. The most recent literature has introduced

algorithms that are either made robust to the uncertainty in the optimization, or that

adaptively adapt to the information in the environment, but little or no literature has

addressed the combined problem of robustness and adaptiveness.

This chapter discussed three key aspects of the robust planning problem. First

we demonstrated that an extended version of a simple robustness algorithm in the

literature is as effective as more complex techniques. However, since it only has the

same computational complexity as the Nominal algorithm, it is significantly easier

to implement than the other techniques available, and thus is well suited for real-

time implementation in the UAV problem. We also provided a new algorithm for

accounting for changes in the situational awareness during replanning. Our approach

to mitigate churning is unique in that the coefficient weights that penalize changes in

the assignment are tuned online based on previous plan changes. We combined these

robust and adaptive approaches to develop a fully integrated solution to the UAV

task planning problem, and discussed the interactions between the two techniques

in a detailed simulation. The resulting Robust Filter Embedded Task Assignment

(RFETA) is shown to provide an algorithm that is well suited for real-time calculation

and yields superior performance to using robustness or FETA alone.

127

6.2 Future Work

This thesis addressed some of the issues of the decentralized planning and proposed

solutions to these problems. But there are still problems that need to be answered

and improvements that could be made, as discussed in the following.

Chapter 2 proposed a Kalman Consensus Algorithm that converges to the desired

centralized solution for the general communication structures. The assumption in this

work is that each agent knows how many neighbors it has and it uses this information

in the formulation. It is also implicitly assumed that once a message is sent to

an agent, the receiver receives the message. This assumption, however, might not

always be satisfied. In some cases, there is a probability associated with receiving

the message by the receiver agent. This probability is usually a function of distance

and environment. Future research should investigate the possibility of achieving the

desired solution in the Kalman Consensus Algorithm for this type of communication

network.

Chapters 3 and 4 dealt with the decentralized task assignment algorithms. Dif-

ferent existing decentralized algorithms were analyzed and their advantages and dis-

advantages were discussed. Two new decentralized task assignment algorithms were

developed to addresses the issues associated with the existing methods. Each of these

algorithms performs better than others for a certain situation with certain communi-

cation and computation capabilities and a certain objective. A good planning system

is an adaptive system that can achieve the best performance for any situation by using

the best possible algorithm. A future direction is to combine the different decentral-

ized algorithms and create an adaptive planning system that at any time can adapt

to the objectives of the mission and limitations of the environment and provides the

best possible plan. The performance of the resulting system degrades gracefully with

an increase of the limitations posed by the environment/vehicles.

The algorithms proposed in this thesis were tested in simulations and their perfor-

mance was confirmed by theoretical proofs and simulation results. But future works

should implement these algorithms in real hardware and test the validity of the algo-

128

rithms in real environment, which is essential when dealing with complex problems.

Although computer simulations can create preliminary results to validate the algo-

rithm, many issues only arise when the algorithm is implemented in real hardware.

An immediate future work for the RFETA algorithm developed in Chapter 5 will

be to further study the effects of intermittent measurements on the performance of

RFETA and highlight the benefits of this approach over using robust planning and/or

FETA alone. Furthermore, developing distributed implementations of this algorithm

is of great practical interest for large-scale teams of UAVs.

129

130

Bibliography

[1] M. Alighanbari, Y. Kuwata, and J. P. How, “Coordination and Control of Mul-

tiple UAVs with Timing Constraints and Loitering,” Proceedings of the IEEE

American Control Conference, Denver, Colorado, June 2003, pp. 5311-5316.

[2] M. Alighanbari, “Task Assignment Algorithms for Teams of UAVs in Dynamic

Environments,” S. M. Thesis, MIT, 2004.

[3] M. Alighanbari, L. Bertuccelli and J. How, “Filter-Embedded UAV Task Assign-

ment Algorithms for Dynamic Environments,” Proceedings of the AIAA Guid-

ance, Navigation and Control Conference, Providence, Rhode Island, Aug. 2004,

AIAA-2004-5251.

[4] M. Alighanbari and J. How, “Decentralized Task Assignment for Unmanned

Aerial Vehicles,” Proceedings of the IEEE European Control Conference and

Conference on Decision and Control, Seville, Spain, Dec. 2005, pp. 5668-5673.

[5] M. Alighanbari and J. P. How, “Robust Decentralized Task Assignment for Co-

operative UAVs,” Proceedings of the AIAA Guidance, Navigation and Control

Conference, Keystone, Colorado, Aug. 2006, AIAA-2006-6454.

[6] M. Alighanbari and J. P. How, “An Unbiased Kalman Consensus Algorithm,”

Proceedings of the IEEE American Control Conference, Minneapolis, Minnesota,

June 2006, pp. 3519-3524.

131

[7] Y. Bar-Shalom, T. Kirubarajan, and X. R. Li, Estimation with applications

to tracking and navigation: Theory Algorithms and Software, John Wiley &

Sons, New York, 2004.

[8] R. W. Beard and V. Stepanyan, “Synchronization of Information in Distributed

Multiple Vehicle Coordinated Control,” Proceedings of the IEEE Conference on

Decision and Control, Maui, Hawaii, Dec. 2003, pp. 2029-2034.

[9] R. Beard and T. McLain, “Multiple UAV Cooperative Search Under Collision

Avoidance and Limited Range Communication Constraints,” Proceedings of the

IEEE Conference on Decision and Control, Maui, Hawaii, Dec. 2003, pp. 25-30.

[10] J. S. Bellingham, M. J. Tillerson, A. G. Richards and J. P. How, “Multi-Task

Assignment and Path Planning for Cooperating UAVs,” Conference on Coordi-

nation, Control and Optimization, Nov. 2001.

[11] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-Task Allocation

and Path Planning for Cooperative UAVs,” Cooperative Control: Models, Appli-

cations, and Algorithms, Editors: S. Butenko, R. Murphey, and P. M. Pardalos,

Kluwer Academic Publishers, 2003, pp. 23-41.

[12] A. Ben-Tal and A. Nemirovski, “Robust Solutions of Uncertain Linear Pro-

grams,” Operations Research Letters, 1999, vol. 25, pp. 1-13.

[13] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods, Prentice Hall, 1989.

[14] D. Bertsekas, “The auction algorithm for assignment and other network flow

problems,” LIDS Technical Report, 1989.

[15] D. Bertsimas and M. Sim, “Robust Discrete Optimization and Network Flows,”

Mathematical Programming, Series B, 2003, vol. 98, pp. 49-71.

[16] D. Bertsimas, K. Katarajan, and C. Teo, “Probabilistic Combinatorial Optimiza-

tions: Moments, Semidefinite Programming, and Asymptotic Bounds,” SIAM

Journal of Optimization, 2005, vol. 15, pp. 185-209.

132

[17] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear optimization under

general norms,” Operations Research Letters, 2004, vol. 32, pp. 510-516.

[18] L. Bertuccelli, M. Alighabari, and J. P. How, “Robust Planning for Coupled

Cooperative UAV Missions,” Proceedings of the IEEE Conference on Decision

and Control, Paradise Island, Bahamas, Dec. 2004, pp. 2917-2922.

[19] L. Bertuccelli, “Robust Planning for Heterogeneous UAVs in Uncertain Environ-

ments,” S. M. Thesis, MIT, 2004.

[20] V. Blondel, J. Hendricks, A. Olshevsky, and J. Tsitsiklis, “Convergence in Mul-

tiagent Coordination, Consensus, and Flocking,” Proceedings of the IEEE Euro-

pean Control Conference and Conference on Decision and Control, Seville, Spain,

Dec. 2005, pp. 2996-3000.

[21] J. Boskovic, R. Prasanth and R. Mehra, “An Autonomous Hierarchical Control

Architecture for Unmanned Aerial Vehicles,” Proceedings of the AIAA Guid-

ance, Navigation, and Control Conference, Providence, Rhode Island, Aug. 2004,

AIAA-2002-4468.

[22] P. Chandler, S. Rasmussen, and M. Pachter, “UAV Cooperative Path Planning,”

Proceedings of the AIAA Guidance, Navigation and Control Conference, Denver,

Colorado, Aug. 2000, AIAA-2000-4370.

[23] P. Chandler and M. Pachter, “Hierarchical Control for Autonomous Teams,”

Proceedings of the AIAA Guidance, Navigation, and Control Conference, Mon-

treal, Canada, Aug. 2001, AIAA-2001-4149.

[24] P. Chandler, M. Pachter, D. Swaroop, J. Fowler, J. K. Howlett, S. Rasmussen,

C. Schumacher, and K. Nygard, “Complexity in UAV Cooperative Control,”

Proceedings of the IEEE American Control Conference, Anchorage, Alaska, May

2002, pp. 1831-1836.

133

[25] P. Chandler, “Decentralized Control for an Autonomous Team,” Proceedings

of the 2nd AIAA Unmanned Unlimited Conference, San Diego, California,

Sept. 2003, AIAA-2003-6571.

[26] P. R. Chandler, M. Pachter, S. R. Rasmussen and C. Shumacher, “Distributed

Control for Multiple UAVs with Strongly Coupled Tasks,” Proceedings of the

AIAA Guidance, Navigation and Control Conference, Austin, Texas, Aug. 2003,

AIAA-2003-5799.

[27] J. Curtis and R. Murphey, “Simultaneous Area Search and Task Assignment for

a Team of Cooperative Agents,” Proceedings of the AIAA Guidance, Navigation

and Control Conference, Austin, Texas, Aug. 2003, AIAA-2003-5584.

[28] J. Curtis, “Cooperative Instability: The Churning Effect and its Causes,” Recent

Developments in Cooperative Control and Optimization, Editors: S. Butenko, R.

Murphey, and P. M. Pardalos, Kluwer Academic Publishers, 2004, pp. 105-116.

[29] J. Feddema, C. Lewis and D.A. Shoenwald, “Decentralized Control of Coopera-

tive Robotic Vehicles: Theory and Application,” IEEE Transactions on Robotics

and Automation, Oct. 2002, vol. 18, pp. 852-864.

[30] M. Flint, T. Khovanovay, and M. L. Curry, “Decentralized Control Using Global

Optimization,” Proceedings of the AIAA Infotech Conference and Exhibit, Rohn-

ert Park, California, May 2007, AIAA-2007-2906.

[31] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.

[32] D. Goldfarb and G. Iyengar “Robust portfolio selection problems,” Mathematics

Of Operations Research, 2003, vol. 28, pp. 1-38.

[33] B. Grocholsky, H. Durrant-Whyte, and P. Gibbens, “An Information-Theoretic

Approach to Decentralized Control of Multiple Autonomous Flight Vehicles,”

Sensor Fusion and Decentralized Control in Robotic Systems III, Oct. 2000,

vol. 4196, pp. 348-359.

134

[34] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, ”Information-Theoretic

Coordinated Control of Multiple Sensor Platforms,” Proceedings of the IEEE In-

ternational Conference on Robotics and Automation, Taipei, Taiwan, May 2003,

pp. 1521-1526.

[35] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

1985.

[36] T. Ito, N. Fukuta, T. Shintani, and K. Sycara, “BiddingBot: A Multiagent

Support System for Cooperative Bidding in Multiple Auctions,” Proceedings

of the IEEE Fourth International Conference on MultiAgent Systems, Boston,

Massachusetts, July 2000, pp. 399-400.

[37] G. Iyengar, “Robust Dynamic Programming,” Mathematics Of Operations Re-

search, May 2005, vol. 30, pp. 257-280.

[38] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of Mobile Au-

tonomous Agents Using Nearest Neighbor Rules,” IEEE Transactions on Auto-

matic Control, June 2003, vol. 48, pp. 988-1001.

[39] M. Jun and D. Jeffcoat, “Convergence Properties of Continuous-Time Markov

Chains with Application to Target Search,” Proceedings of the IEEE American

Control Conference, Portland, Oregon, June 2005, pp. 662-667.

[40] R. Kastner, C. Hsieh, M. Potkonjak, and M. Sarrafzadeh, “On the Sensitivity

of Incremental Algorithms for Combinatorial Auctions,” Proceedings of the 4th

IEEE International Workshop on Advanced Issues of E-Commerce and Web-

based Information Systems (WECWIS), Newport Beach, California, June 2002,

pp. 81-88.

[41] E. King, M. Alighanbari, Y. Kuwata, and J. How, “Coordination and Control

Experiments on a Multi-Vehicle Testbed, ” Proceedings of the IEEE American

Control Conference, Boston, Massachusetts, June 2004, pp. 5315-5320.

135

[42] Y. Kim and K. Hong, “Decentralized Information Filter in Federated Form,” Pro-

ceedings of the IEEE SICE 2003 Annual Conference, Fukui, Japan, Aug. 2003,

pp. 2176-2181.

[43] Y. Kim and K. Hong, “Decentralized Sigma-Point Information Filters for Target

Tracking in Collaborative Sensor Networks,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, Aug. 2005, vol. 53, pp. 2997-3009.

[44] A. Kott, “Advanced Technology Concepts for Command and Control,” Xlibris

Corporation, Feb. 2004.

[45] P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications,

Kluwer Academic Publishers, 2003.

[46] P. Krokhmal, R. Murphey, P. Pardalos, S. Uryasev, and G. Zrazhevsky, “Robust

Decision Making: Addressing Uncertainties in Distributions,” In Cooperative

Control: Models, Applications and Algorithms, Kluwer Academic Publishers,

2003, pp. 165-185.

[47] P. Krokhmal, J. Palmquist, and S. Uryasev, “Portfolio Optimization with Con-

ditional Value-At-Risk Objective and Constraints,” The Journal of Risk, 2002,

vol. 4, no. 2.

[48] Y. Kuwata, A. Richards, T. Schouwenaars, and J. P. How, “Decentralized Robust

Receding Horizon Control for Multi-Vehicle Guidance,” Proceedings of the IEEE

American Control Conference, Minneapolis, Minnesota, June 2006, pp. 2047-

2052.

[49] A. M. Kwasnica, J. O. Ledyard, D. Porter, and C. DeMartini, “A New and

Improved Design for Multi-Object Iterative Auctions,” Journal of Management

Science, Mar. 2005, vol. 51, pp. 419-434.

[50] G. Laporte and F. Semet, “Classical Heuristics for the Capacitated VRP,” In The

Vehicle Routing Problem, edited by P. Toth and D. Vigo, SIAM, Philadelphia,

2002.

136

[51] C. Lin and U. Wen, “Sensitivity Analysis of the Optimal Assignment,” European

Journal of Operational Research, 2003, vol. 149, pp. 35-46.

[52] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative Real-Time Search and Task

Allocation in UAV Teams,” Proceedings of the IEEE Conference on Decision

and Control, Maui, Hawaii, Dec. 2003, pp. 7-12.

[53] T. Lemaire, R. Alami and S. Lacroix, “A Distributed Task Allocation Scheme

in Multi-UAV Context,” Proceedings of the IEEE International Conference on

Robotics and Automation, New Orleans, Louisiana, Apr. 2004, pp. 3622-3627.

[54] D. Li and J. Cruz, “A Robust Hierarchical Approach to Multi-Stage Task Alloca-

tion Under Uncertainty,” Proceedings of the IEEE European Control Conference

and Conference on Decision and Control, Seville, Spain, Dec. 2005, pp. 3375-

3380.

[55] W. McEneaney and B. Fitzpatrick, “Control for UAV Operations Under Imper-

fect Information,” Proceedings of the First AIAA UAV Symposium, Portsmouth,

Virginia, May. 2002, AIAA-2002-3418.

[56] G. Minkler, Theory and Applications of Kalman Filtering, Magellan Book

Company, 1990.

[57] M. Moser, D. Jokanovic, and N. Shiratori, “An Algorithm for the Multidimen-

sional Multiple-Choice Knapsack Problem,” IEICE Transaction on Fundamen-

tals, Mar. 1997, vol. E80-A, pp. 582-589.

[58] J. Mulvey, R. Vanderbei, and S. Zenios, “Robust optimization of large-scale

systems,” Operations Research, 1995, vol. 43, pp. 264-281.

[59] R. Olfati-Saber and R. M. Murray, “Consensus Problems in Network of Agents

With Switching Topology and Time-Delay,” IEEE Transaction on Automatic

Control, Sept. 2004, vol. 49, pp. 1520-1533.

137

[60] R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus Filter,”

Proceedings of the IEEE European Control Conference and Conference on Deci-

sion and Control, Seville, Spain, Dec. 2005, pp. 8179-8184.

[61] R. Olfati-Saber, “Consensus Filters for Sensor Networks and Distributed Sensor

Fusion,” Proceedings of the IEEE European Control Conference and Conference

on Decision and Control, Seville, Spain, Dec. 2005, p. 6698-6703.

[62] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in

Networked Multi-Agent Systems,” Proceedings of the IEEE , Jan. 2007, vol. 95,

pp. 215-233.

[63] C. L. Ortiz, R. Vincent and B. Morisset, “Task Inference and Distributed Task

Management in the Centibots Robotic Systems,” Proceedings of the Interna-

tional Conference on Autonomous Agents and Multiagent Systems, Utrecht, The

Netherlands, July 2005, pp. 860-867.

[64] D. Pachamanova, “A Robust Optimization Approach to Finance,” Ph.D. Thesis,

MIT Operations Research Center, 2002.

[65] D. C. Parkes and L. H. Unger, “Iterative Combinatorial Auctions: Theory and

Practice,”, Proceedings of the AAAI 17th National Conference on Artificial In-

telligence, Austin, Texas, July 2000, pp. 74-81.

[66] M. Polycarpou, Y. Yang, and K. Passino, “A Cooperative Search Framework

for Distributed Agents,” Proceedings of the IEEE International Symposium on

Intelligent Control, Mexico City, Mexico, Sept. 2001, pp. 1-6.

[67] W. Ren and R. Beard, “Consensus of Information Under Dynamically Changing

Interaction Topologies,” Proceedings of the IEEE American Control Conference,

Boston, Massachusetts, June 2004, pp. 4939-4944.

[68] W. Ren, R. Beard, and D. Kingston, “Multi-Agent Kalman Consensus with

Relative Uncertainty,” Proceedings of the IEEE American Control Conference,

Portland, Oregon, June 2005, pp. 1865-1870.

138

[69] W. Ren, R. Beard, and E. Atkins, “A Survey of Consensus Problems in Multi-

Agent Coordination,” Proceedings of the IEEE American Control Conference,

Portland, Oregon, June 2005, pp. 1859-1864.

[70] R. Rockafellar and S. Uryasev, “Optimization of Conditional Value at Risk,”

Available online at http://www.ise.ufl.edu/uryasev/cvar.pdf, last accessed

March 2007.

[71] T. Schouwenaars, E. Feron, and J. P. How, “Safe Receding Horizon Path Plan-

ning for Autonomous Vehicles,” Proceedings of the 40th Allerton Conference on

Communication, Control, and Computation, Monticello, Illinois, Oct. 2002.

[72] C. Schumacher and P. Chandler, “Task Allocation for Wide Area Search Mu-

nitions,” Proceedings of the IEEE American Control Conference, Anchorage,

Alaska, June 2002, pp. 1917-1922.

[73] E. Seneta, Non-negative Matrices, John Wiley & Sons, New York, 1973.

[74] A. Soyster, “Convex Programming with Set-Inclusive Constraints and Applica-

tions to Inexact Linear Programming, ” Operations Research, 1973, pp. 1154-

1157.

[75] D. M. Stipanovic, G. Inalhan, R. Teo and C. Tomlin, “Decentralized Overlapping

Control of a Formation of Unmanned Aerial Vehicles,” Proceedings of the IEEE

Conference on Decision and Control, Las Vegas, Nevada, Dec. 2002, pp. 2829-

2835.

[76] J. Tierno and A. Khalak, “Frequency Domain Control Synthesis for Time-Critical

Planning.” Proceedings of the IEE European Control Conference, Cambridge,

UK, Sept. 2003.

[77] Unmanned Aircraft Systems Roadmap 2005–2030. Office of Secretary of Defense,

Aug. 2005.

[78] R. S. Varga, Geršgorin and His Circles, Springer, 2004.

139

[79] J. Wolfowitz, “Product of Indecomposable, Aperiodic Stochastic Matrices,” Pro-

ceedings of the American Mathematical Society, 1963, vol. 15, pp. 733-736.

[80] Y. Yang, A. Minai and M. polycarpou, “Decentralized Cooperative Search by

Networked UAVs in an Uncertain Environment,” Proceedings of the IEEE Amer-

ican Control Conference, Boston, Massachusetts, June 2004, pp. 5558-5563.

[81] Y. Yang, A. Minai, and M. Polycarpou, “Evidential Map-Building Approaches

for Multi-UAV Cooperative Search,” Proceedings of the IEEE American Control

Conference, Portland, Oregon, June 2005, pp. 116-121.

[82] S. Zhu, D. Li, S. Wang, “Risk Control Over Bankruptcy in Dynamic Portfolio

Selection: A Generalized Mean-Variance Formulation,” IEEE Transactions on

Automatic Control, vol. 49, pp. 447-457.

140

